
Writing Safe Smart Contracts in Flint

Franklin Schrans 
June 2018

Supervisor: 

Prof. Susan Eisenbach 

Second Marker: 

Prof. Sophia Drossopoulou

Imperial College London

Department of Computing

MEng Individual Project





Abstract

Blockchain-based platforms such as Ethereum support the execution of versatile decentralised
applications, known as smart contracts. These typically hold and transfer digital currency
(e.g., Ether) to other parties on the platform. Smart contracts have, however, been subject to
numerous attacks due to the unintentional introduction of bugs. In total, over a billion dollars
worth of Ether has been stolen. As smart contracts cannot be updated after deployment, it is
imperative to ensure their correctness during development. Current program analysers cannot
accurately find all vulnerabilities in smart contracts, as the main programming language used
to write smart contracts allows many unsafe patterns. For this reason, program analysers are
often not part of the development cycle.

We propose Flint, a new statically-typed programming language specifically designed for
writing robust smart contracts. Flint’s features enforce the writing of safe and predictable
code. To help programmers reason about access control of functions, we introduce caller
capabilities. To prevent vulnerabilities relating to the unintentional loss of currency, Flint
Asset types provide safe atomic operations, ensuring the state of contracts is always consistent.
Writes to state are restricted, and simplify reasoning about smart contracts.
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Chapter 1

Introduction

The Ethereum [1] network supports decentralised execution of programs, known as smart
contracts. A smart contract is similar to a stateful web service, but is not executed by com-
puters controlled by a specific organisation. Instead, it is deployed to the nodes of Ethereum’s
open network, known as miners. The Ethereum Virtual Machine [2] (EVM) is a global vir-
tual machine operated by miners supporting the execution of smart contracts. It provides a
versatile instruction set allowing the creation of Turing-complete [3] programs.

Users can interact with a smart contract by calling the functions it exposes. Function calls are
executed by miners, which maintain the state of each smart contract. Similarly to Bitcoin [4]
users, Ethereum users and smart contracts can exchange a digital currency known as Ether.
Miners are rewarded for processing transactions and function calls using this currency.

Smart contracts implement self-managed agreements enforced autonomously. The source
code of a smart contract is publicly available, and cannot be changed after deployment. The
execution of function calls cannot be tampered with. Individuals who interact with smart
contracts trust the correct execution of the code rather than reprogrammable machines con-
trolled by a single provenance. In recent years, smart contracts have been used to implement
auctions, votes [5], and sub-currencies [6] for crowdfunding purposes. Implementing a vote
using a smart contract allows voters to not have to trust an organisation to count the votes
correctly—they would be counted by the smart contract.

Not being able to update a smart contract’s code after deployment requires the finding of
all bugs before. Otherwise, a smart contract might exhibit unintended behaviour. Recently,
attackers have found vulnerabilities in smart contracts allowing to redirect Ether funds held
by the smart contract to their personal Ethereum account. Attacks against TheDAO [7]
and the Parity smart contracts [8, 9] have accumulated losses of over a billion dollars worth
of Ether. The primary programming language used to write smart contracts, Solidity [5],
is expressive and introduces features designed for smart contract programming. However,
Solidity supports a variety of unsafe patterns [10] which makes it difficult for analysis tools [11,
12] and programmers to find all the vulnerabilities of a smart contract. Solidity has few built-
in security mechanisms and does not require programmers to write safe smart contracts by
default. Often, vulnerabilities are introduced because of simple programming mistakes, such
as forgetting to write a keyword in a function signature. Others are harder to notice, such as
implicit integer overflows, or discarding the return value of sensitive functions.

For traditional computer architectures, languages such as Java [13], Haskell [14], Swift [15],
Rust [16], and Pony [17] leverage years of research in programming languages to prevent the
writing of unsafe code and allowing efficient optimisations. In contrast, multiple programming
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1.1. Challenges

languages [5, 18, 19, 20, 21] for writing smart contracts, including Solidity, have attempted to
mimic languages for traditional architectures such as JavaScript [22] and Python [23], without
providing additional safety mechanisms for Ethereum’s unique programming model.

This project introduces a intuitive statically-typed programming language, specifically de-
signed for writing Ethereum smart contracts. By identifying challenges specific to developing
smart contracts and learning from past vulnerabilities, we attempt to design language fea-
tures which make it difficult to write unsafe code. In particular, we focus on four main
points:

1. Protecting against unauthorised function calls. Smart contract often carry out sen-
sitive operations which need to be protected against unauthorised calls. It is easy to forget
to write assertions which check whether the caller of a function is authorised to perform the
call, and such vulnerabilities have been exploited numerous times.

2. Safe operations for handling Ether. As many smart contracts handle Ether (such as
crowdfunding smart contracts), we believe the programming language should provide safe
operations to receive and manage Ether. Ether is usually represented as an integer rather
than a dedicated type, allowing accidental conversions between numbers and Ether. This
leads to inconsistent states, in which the actual Ether balance of the smart contract is not
accurately recorded.

3. Limiting writes to state. Since the lifetime of a smart contract can span multiple years,
it is important for programmers to be able to reason about functions given any state. A
programming language could help achieve this goal by preventing spurious writes to state,
and supporting the declaration of immutable variables.

4. Full interoperability with Solidity. As a large set of smart contracts and libraries are writ-
ten in Solidity, we aim to make our programming language interoperable with this language.
This would entail having an Application Binary Interface (ABI) which is compatible with
Solidity’s, thus allowing Solidity smart contracts to call functions on Flint smart contracts
and vice-versa. In addition, Ethereum client applications which support the preparation of
Solidity function calls would also support Flint smart contracts without modification.

1.1 Challenges

1. Developing an entirely new programming language. The development of a program-
ming language involves significant design and implementation work. Determining which
features should be included requires to understand the challenges specific to programming
immutable decentralised applications. Furthermore, we wanted to make our language fit
into the existing Ethereum ecosystem. To allow for existing Ethereum developers to easily
transition to Flint, we needed to make our safety features approachable and easy to use. To
maintain efficient interoperability between Flint and Solidity contracts, we adopted similar
calling conventions.

2. Implementing an extensible compiler. Implementing a compiler for a language in devel-
opment requires designing a code architecture allowing for frequent changes and extensions.
We were developing for a new platform with limited tools for debugging, deploying, and test-
ing EVM bytecode. We enabled Solidity tools to work with Flint programs by embedding
Flint IR code in a Solidity file.

3. Evaluating a language. It is difficult to immediately assess the impact of our language
on the Ethereum community. Nonetheless, we compare Flint programs and their equivalent
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Chapter 1. Introduction

in current languages in terms of code quality, safety (by running program analysers), and
performance (by comparing execution costs). We also received feedback from presenting our
work at a conference, and from the Ethereum community.

1.2 Contributions

1. The Flint Programming Language. We present Flint, a new language specifically de-
signed for writing robust smart contracts with the following main features.

(a) Caller Capabilities. We introduce a capabilities-based system to protect functions
against unauthorised calls. Ethereum users must have the appropriate caller capability to
call functions. We leverage Ethereum’s existing cryptographic schemes to use Ethereum
user addresses to power the caller capabilities feature. Flint requires programmers to sys-
tematically think about which Ethereum users are allowed to call the smart contract’s
functions before defining them. The novel capabilities system statically verifies the valid-
ity of internal calls to avoid unintentional bugs and increase runtime performance. The
design and implementation of caller capabilities is described in detail in chapter 4.

(b) Safe Asset transfer operations. Flint supports special operations for handling Assets
such as Ether in smart contracts. Transfer operations are performed atomically, and ensure
that the state of contract is always consistent. In particular, Assets in Flint cannot be
accidentally created, duplicated, or destroyed, but they can be atomically split, merged,
and transferred to other Asset variables. Using Asset types avoids a class of vulnerabilities
in which smart contracts’ internal state does not accurately represent their true Ether
balance. We describe the design and implementation of Flint Asset types in chapter 5.

(c) Immutability by default. To aid with reasoning, functions in Flint cannot mutate the
state of the smart contract by default. Modifying the state requires the function signature
to include the mutating keyword. This avoids accidental writes to state, and allows users
of the smart contract to easily notice which functions need to be read carefully. This
feature is described in subsection 3.3.1.

(d) ABI Parity. We use the same Application Binary Interface (ABI) as Solidity’s. This al-
lows Solidity contracts to call Flint functions, and vice-versa, and allows existing Ethereum
client applications to interact with Flint smart contracts without additional modifications.
Caller capabilities are checked at runtime for external calls. The compiler also embeds
Flint’s IR code into a Solidity file, allowing us to leverage debugging and testing tools for
Solidity. We show how we achieved ABI parity in subsection 6.7.3.

2. The Flint Compiler. We implement a compiler for Flint which verifies the validity of Flint
programs and produces correct EVM bytecode. The implementation is written in 25 000
lines of Swift [15] code, and is tested using our robust testing infrastructure. The extensible
code architecture of the compiler allowed us to support newly designed language features.

3. Evaluation. We compare the implementation of selected smart contracts in Flint and other
Solidity smart contracts. In our evaluation, we find that Flint programs are much safer with
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low performance overheads, and sometimes significantly faster thanks to more compile-time
guarantees.

1.3 Community Feedback

The Flint project was made open source on GitHub [24] in April 2018 under the MIT license.
Since then, we have presented the language at the 2nd International Conference on the
Art, Science, and Engineering of Programming in Nice, France, for which we published a
paper [25]. The feedback was very positive. Flint won the First Prize in the Undergraduate
track of the ACM Student Research Competition, and was selected to participate in the
ACM Grand Finals. We were also honoured to present Flint at the Imperial Blockchain
Forum alongside blockchain experts.

Flint’s safety focused features and ease of use were praised by the Ethereum Community, with
articles describing Flint as being “on its way to filling a sorely needed gap in the developer
tooling space.” Our Medium article [26] accumulated over a thousand “claps”, and among
the 6700 smart contract programming GitHub projects, Flint [24] is among the thirty most
popular, with over 140 “stars”. We have also seen developers write articles about implementing
their smart contracts in Flint [27].
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Chapter 2

Background

In this chapter, we introduce concepts required for writing a programming language for
Ethereum smart contracts. We present an overview of how Ethereum and its blockchain
operate, introduce the Solidity programming language, study significant attacks which were
conducted against smart contracts, and current approaches to prevent vulnerabilities.

2.1 Ethereum, a Smart Contracts Platform

Ethereum is a platform which supports the decentralised execution of programs, known as
smart contracts. Smart contracts are executed by Ethereum’s open network of nodes (min-
ers), and are interacted with through function calls, similarly to traditional web services.
In addition, users and smart contracts on Ethereum can hold and transfer a currency called
Ether, which we describe in 2.1.1. Users perform Ether transfers and call functions by cre-
ating Ethereum transactions, as explained in 2.1.5, which are processed by all the miners in
the network. The state of Ethereum records the processed transactions, the balances of each
user account, and the state of each smart contract. State is maintained by each miner in the
network using a blockchain data structure for synchronising changes. This is described in
more detail in 2.1.6.

Once deployed, the source code of a smart contract is available for any user to read. Smart
contracts run autonomously as no party can alter their behaviour by updating the code.
This allows users of a smart contract to inspect and understand the behaviour of the code,
while being guaranteed it will persistently behave the same way. A smart contract can thus be
thought of as the implementation of an agreement which is enforced by an autonomous entity.
Clients of smart contracts do not have to trust the computers of a single provenance to execute
the smart contract correctly. This eliminates the need for users to trust an organisation and
is beneficial for multiple applications, such as running auctions or votes [5], and implementing
sub-currencies [6] for crowdfunding purposes.

For instance, organising a vote, in which users can vote for an outcome among others, can
be organised using a smart contract. Voters would cast their vote by calling a function on
the smart contract. Clients would be guaranteed votes are counted correctly, as the code
of the smart contract can be read and verified, and the execution of the contract cannot be
tampered with due to the decentralised nature of its execution. Other applications of smart
contracts include crowdfunding, or creating sub-currencies.
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2.1. Ethereum, a Smart Contracts Platform

Record Account types Description

balance All The number of Wei owned by the account.

storageRoot Smart contracts Keccak-256 hash of Merkle Patricia’s tree root
used to encode the contract’s internal storage.

codeHash Smart contracts Keccak-256 hash of the account’s bytecode.

Figure 2.1: Ethereum Account States (Omitting Certain Fields)

2.1.1 Currency and Gas

The Ethereum platform provides its own currency, Ether, which can be used to reflect the
value of goods and services. There are a variety of denominations of Ether, the smallest one
being a Wei. 1 Wei is 10−18 Ether. When referring to Ether in Ethereum transactions, the
Wei denomination is used.

Users also use Ether to purchase gas, required to pay for computational costs when executing
transactions (see subsection 2.1.5). The amount of gas required to execute a function depends
on its computational cost.

2.1.2 Cryptography and Addresses

The Keccak-256 [28] cryptographic hashing algorithm is used throughout the Ethereum
platform. Keccak-256 was a proposed implementation of the Secure Hash Algorithm
3 [29] (SHA-3), but was not the final implementation of SHA-3 (FIPS-202), which differs
slightly.

Users and smart contracts are identified by their Ethereum address, which is a 160-bit integer.
Addresses are usually represented in hexadecimal format.

2.1.3 Accounts and Account States

Information about accounts is stored by every miner in the Ethereum network. There are
two types of accounts on Ethereum:

Externally owned accounts (EOAs). These are controlled by private keys. Creating an
EOA involves generating a private key (a 256-bit integer) and computing the correspond-
ing address by using a combination of the Elliptic Curve Digital Signature Algorithm [30]
(ECSDA) and Keccak-256. Users create EOAs to send Ether to other users and call con-
tract functions, by creating transactions (described in 2.1.5).

Smart contract accounts. These are controlled by their bytecode, which miners run when
users call their functions, and accept calls from other accounts.

Figure 2.1 describes the contents of an account state. A contract’s internal storage is main-
tained by miners using a Merkle Patricia tree [31] mapping Keccak-256 hashes to 256-bit
integers.
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Field name Description

to The recipient’s address.

value An optional Wei value to transfer to the recipient.

data An optional input data payload for transactions targeting contracts.

init An optional payload of bytecode, used to initialise contracts.

gasPrice Number of Wei to be paid per unit of gas.

gasLimit The maximum amount of gas which should be used to execute the
transaction.

v, r, s Values corresponding to the sender’s signature.

Figure 2.2: Contents of an Ethereum Transaction (Omitting Certain Fields)

2.1.4 World State

The world state σ is the mapping between account addresses and account states. World
state is maintained using a Merkle Patricia tree, which maps Keccak-256 addresses to the
Recursive Length Prefix–encoded [32] value of an account state.

2.1.5 Transactions and Calls

Transactions. The Ethereum platform can be seen as a finite-state machine, where state
transitions are performed through transactions. An Ethereum transaction T brings a state
σt to a state σt+1:

σt+1 ≡ Υ(σt, T )

where Υ is the Ethereum state transition function (we use the same notation as the Ethereum
Yellow Paper [2]). Practically, it is a signed data packet originating from an EAO, which
can update the state (Ether balance, or contract storage) of an account. Smart contracts
cannot create transactions. Figure 2.2 describes the contents of an Ethereum transaction.
Transactions are aggregated into blocks of Ethereum’s blockchain after having been mined.
Newly-created transactions are broadcasted to the rest of the network.

EAOs decide which gas price, i.e., the number of Wei they are paying per unit of gas, is
attached to their transaction. Usually, a higher gas price increases the probability for the
transaction to be chosen by a miner. A transaction involves executing a variety of instructions
(more details in 2.1.7). The amount of gas which will be used is not always deterministic (if
the contract uses loops or recursion, for example), and thus a gas limit is also specified in a
transaction. The execution of a transaction is terminated with an exception if the gas limit
is reached.

Miners record which transactions they have processed by inserting them into a Merkle Patrica
tree. When a transaction is processed, the client receives a transaction receipt, which indicates
whether the transaction was successful, how much gas was used, etc.

Figure 2.3 presents the lifecycle of an Ethereum transaction. Transactions are created and
signed by EAOs using an Ethereum client, and sent to miners in the Ethereum network. Each
miner selects which transaction to execute, and write state changes to their local blockchain,
which is then propagated to the other miners in the network.
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User

ETH Client
Address  0x624..5f3

Transaction #63
to: 0x35953825…

data: 0x50294858…
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POP 
DUP1 
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0x4

State
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Bytecode: 0xF30F3953..
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POP 
DUP1 
JUMPDEST 
STOP
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TX

Figure 2.3: Lifecycle of an Ethereum Transaction

2.1.6 Blockchain

A blockchain is an append-only data structure composed of blocks, allowing miners to main-
tain a consistent view of the network’s state. Cryptographic schemes ensure old blocks in a
blockchain cannot be modified.

An Ethereum block is a data structure which is appended to the end of a blockchain, used by
miners to share the result of the transactions they have processed. Miners have the freedom
to select which transaction to process from their transaction pool (typically, the one with the
highest gas price). A block contains a block header and the list of transactions which were
processed by the miner (stored in a Merkle Patricia tree). Figure 2.4 describes the content
of an Ethereum block header.

Miners each have a local version of the Ethereum blockchain. Miners append newly computed
blocks to their local version of the blockchain, and broadcast their new blockchain to the rest
of the network. Computing a block requires the miner to solve a cryptographic problem
which limits the rate at which they can broadcast blocks. Miners thus continuously receive
blockchains, and replace their local version with the longest blockchain they have received.
As this process is the same for each miner, miners work off of the same blockchain.

Hard Forks

A fork in a blockchain refers to the existence of diverging paths in the sequence of blocks. A
hard fork is an intentional fork which requires the network’s nodes to adopt new backwards-
incompatible rules for generating blocks. That is, blocks constructed by miners under the
old rules are rejected by miners who follow the new rules. Hard forks usually occur when the
Ethereum protocol is updated.
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Field name Description

header The block header, used as an identifier, includes the following
fields:
parentHash: The Keccak-256 hash of the parent block header.

Hashing previous blocks prevents attackers from altering
the history of the blockchain.

beneficiary: The address to which the reward gas is sent to.
stateRoot: The Keccak-256 hash of the root node of the state

trie after the transactions have been executed.
transactionsRoot: The Keccak-256 hash of the root node of

the transactions trie for the block.

transactions A list of the transactions processed in the block, recorded from
the transactions Merkle Patricia tree.

Figure 2.4: Contents of an Ethereum Block Header (Omitting Certain Fields)

2.1.7 Ethereum Virtual Machine and Bytecode

When processing transactions, miners execute bytecode. The execution model of Ethereum
bytecode is specified through a stack-based virtual machine, the Ethereum Virtual Machine [2]
(EVM). Like traditional computer architectures, EVM supports a variety of opcodes, allowing
the development of versatile applications. EVM words are 256-bit long.

The Ethereum Virtual Machine uses four data stores.

1. Stack. The EVM stack has a maximum size of 1024. Accessing the stack is inexpensive,
regarding gas costs.

2. Memory. A volatile byte array. Memory gets cleared after each transaction and is not
written to the blockchain. All locations are initialised to zero. Its size grows at runtime
if required, and its theoretical maximum size is 2256. Accesses to memory are cheaper
than storage accesses, and become more expensive when its size is increased.

3. Storage. A non-volatile word array. Storage persists across transactions and is written
to the blockchain. All locations are initialised to zero. Its size is fixed at 2256 bytes.
The cost of writing to storage is high, and is the same for all locations.

4. Virtual ROM. A read-only byte array containing the instructions of the smart con-
tract.

Let µs denote the EVM stack, and µs[i] the ith element from the top of the stack. Let µ′
s

denote the resulting stack after executing an opcode. When we write µ′
s[0] = c, we mean

µ′
s[0] = c ∧ ∀i ∈ [1..k).µ′

s[i] = µs[i − 1] where k denotes the length of µs’s stack. Let µpc

denote the value of the program counter.

Recall σ denotes the Ethereum global state. Let σ′ denote the global state after executing
an opcode. We denote Ia the address of the executed contract, and σ[Ia] its storage.

Figure 2.1 presents a selection of EVM opcodes. In addition to the traditional computer
architecture instructions, EVM supports Ethereum-specific instructions, for example SHA3
to perform a Keccak-256 hash, BALANCE to obtain the number of Wei attached to the
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transaction, CALL to send a message call to another address, and REVERT to halt execution
and revert the storage operations which occurred during the transaction.

Opcode Description

Stop and Arithmetic Operations

STOP Halt execution.

ADD µ′
s[0] = µs[0] + µs[1]

MUL µ′
s[0] = µs[0] ∗ µs[1]

...

Comparison & Bitwise Logic Operations

EQ µ′s[0] =

{
1 if µs[0] = µs[1]

0 otherwise

GT µ′s[0] =

{
1 if µs[0] > µs[1]

0 otherwise

AND ∀i ∈ [0..256).µ′
s[0]i = µs[0]i ∧ µs[1]i where µs[i]j the jth bit of

µs[i].

...

SHA3

SHA3 µ′s[0] = Keccak-256 hash of the value in memory in the range
[µs[0]..µs[0] + µs[1])

Environmental Information

ADDRESS µ′
s[0] = address of the current executed account

BALANCE µ′
s[0] = balance in Wei of the account at address µs[0]

CALLER µ′
s[0] = address of the caller (account responsible for the current

transaction)

CALLVALUE µ′
s[0] = number of Wei attached to this transaction

GASPRICE µ′
s[0] = gas price in the current environment

...

Block Information

COINBASE µ′
s[0] = address of the current block’s beneficiary (gas recipient)

TIMESTAMP µ′
s[0] = current block’s timestamp

NUMBER µ′
s[0] = current block’s number

...

Stack, Memory, Storage and Flow Operations

POP Remove items from the stack.

MLOAD Load word from memory at [µs[0]..µs[0] + 32).

MSTORE Store word µs[1] to memory at [µs[0]..µs[0] + 32).
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SLOAD Load word from storage. µ′
s[0] = σ[Ia][µs[0]]

SSTORE Save word to storage. σ′[Ia][µs[0]] = µs[1]

JUMP Set the program counter to µs[0].

PC µ′
s[0] = value of program counter prior to executing the opcode.

...

Push Operations

PUSH1 Push the 1 byte value at µpc + 1, extended with zeros to fit 32
bytes.

PUSH2 Push the 2 byte value from [µpc + 1..µpc + 2], extended with
zeros to fit 32 bytes.

...

PUSH32 Push a full word value from [µpc + 1..µpc + 32].

Logging Operations

LOG0..LOG4 Append to log record with values (details omitted).

System Operations

CALL Message-call to another account (details omitted).

REVERT Halt execution, reverting state changes.

SELFDESTRUCT Halt execution and register account for later deletion. Transfers
the account’s balance to µs[0].

Table 2.1: EVM Opcodes from the Yellow Paper [2]

Exceptions. Execution can be interrupted due to exceptions. These can occur for various
reasons, including as the outcome of a REVERT instruction, executing an invalid instruction, a
stack underflow, or a gas limit reached.

2.1.8 EVM Events

EVM supports special opcodes to log events triggered in a smart contract. Logs are sent
back to the creator of the transaction, as part of the transaction receipt. JavaScript libraries
such as web3.js [33] allow JavaScript applications to connect to the Ethereum blockchain
and initiate transactions. web3.js also allows listening for EVM events returned as part of
the transaction receipt and trigger a user-defined function when specific events occur.

2.1.9 Secret-Sharing Example

We now go through a practical example of how the Ethereum platform can be used. Consider
three individuals, A, B, and C. A and B both have a secret to share to C. However, A is
only willing to share its secret MA if B will share its MB secret, and vice-versa. To ensure
both A and B have provided their secrets before delivering them to C, C sets up a smart
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A

B

S C

MB

MA

MA, MB

Figure 2.5: The Interactions Between the Ethereum Accounts A, B, C, and S. A sends its
secret message MA to S, B sends its secret message MB to S, and S delivers both messages
to C.

contract S which will receive A and B’s secrets, and only deliver the results to C whenever
both secrets are received.

1. Joining the network. A, B, and C launch their Ethereum clients, and each create
an EOA. They are given their Ethereum address, and a private key.

2. Creating a smart contract. C writes a smart contract S using a high-level pro-
gramming language, such as Solidity, and compiles the code to EVM bytecode. C then
deploys the contract to Ethereum’s blockchain by creating a transaction and signing it
using its private key. C sets the init field (Figure 2.2) to the Keccak-256 hash of
the bytecode. C estimates the amount of gas which will be needed for the transaction
to be processed, and sets the gas field accordingly. C also creates a small JavaScript
application using web3js to listen to EVM events triggered by S. When the “messages
received” event is triggered, the application extracts from the payload the messages of
A and B and sends them to C by email.

3. Deploying the smart contract. A miner of the Ethereum network selects C’s trans-
action and waits for miners to process it. Eventually, miners run the transaction’s
bytecode, and create a new block. The block gets accepted to the blockchain and S is
deployed at address AS .

4. A sends its secret to S. A would now like to send its message to C. A creates
a transaction, and since they are familiar with Solidity’s Application Binary Interface
(ABI), they know how to populate the data field of their transaction to call a specific
function in S, passing in their secret message as a parameter. The transactions get
broadcast to all the miners.

5. S receives a call from A. A’s transaction gets mined: nodes execute S’s bytecode and
the function A’s transaction specified gets called with the secret message as a parameter.
Part of the internal state is modified, and the smart contract now acknowledges the
receipt of the message by A, and stores the message. The execution of S stops, as it
has not received B’s message yet.

6. B send its message. B is also experienced with Solidity’s ABI and send its message
to S.

7. S receives B’s message. Now that both messages have been received, S sends an
EVM event, which triggers a callback function in C’s JavaScript application. C receives
the email with A and B’s secrets.

8. Optional: C deletes S. C then wants to prevent S accepting any calls to its functions by
deleting its associated account. C thus creates a new transaction calling a function in
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S which executes the SELFDESTRUCT opcode. The contract is now marked as destroyed.

Note: All the data on the Ethereum blockchain is public and is not encrypted out-of-the-box.
A and B secrets are readable by any miner. To protect their privacy, one could imagine they
could securely send their secrets to S using a public/private key scheme.

An example of how S could be implemented in the Solidity programming language is shown
in Listing 2.11.

2.2 Solidity

Solidity [5] is a high-level programming language for developing Ethereum smart contracts. It
is statically-typed, imperative, and its syntax is inspired by JavaScript. A Solidity contract is
similar to an object-oriented class, which can inherit functionality from other classes. Built-in
types in Solidity include integers, addresses, fixed-size arrays, dynamic arrays, dictionaries
(mapping). It is also possible for programmers to define their own types (struct). A contract
declaration contains storage fields, event declarations, and function declarations.

2.2.1 Coin Example

Listing 2.1, from the Solidity documentation, contains the declaration of a sub-currency con-
tract, Coin. Coin contains two fields, minter and balances, both declared public1. The fields
constitute the contract’s internal storage, and their values are persisted across transactions.
The event Sent takes three arguments, and when called from a function, gets appended to
the contract’s log. The constructor on line 13 and other functions make use of the global
msg.sender variable, which is bound to the Ethereum address of the caller of the function
being executed. They are also marked public and mutate the contract state.

1 contract Coin {
2 // The keyword "public" makes those variables
3 // readable from outside.
4 address public minter;
5 mapping (address => uint) public balances;
6
7 // Events allow light clients to react on
8 // changes efficiently.
9 event Sent(address from, address to, uint amount);
10
11 // This is the constructor whose code is
12 // run only when the contract is created.
13 function Coin() public {
14 minter = msg.sender;
15 }
16
17 // Functions can return a value.
18 function getMinter() public returns(address) {
19 return minter;
20 }
21
22 function mint(address receiver, uint amount) public {

1All data on the blockchain can be read from any miner. When declaring a field public, Solidity synthesises
getter functions for those fields.
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23 if (msg.sender != minter) return;
24 balances[receiver] += amount;
25 }
26
27 function send(address receiver, uint amount) public {
28 if (balances[msg.sender] < amount) return;
29 balances[msg.sender] -= amount;
30 balances[receiver] += amount;
31 Sent(msg.sender, receiver, amount);
32 }
33 }

Listing 2.1: Solidity Sub-Currency Sample, from the Solidity Documentation1

2.2.2 Functions

Function Modifiers

Solidity function modifiers can be used to check preconditions before entering a function’s
body. Most of the time, they are used to insert a condition check before a function body. In
Listing 2.2, we create the onlyManager modifier on line 4. The require statement enforces
the condition msg.sender == manager to be true. If it is not, execution of the contract stops,
and the sender receives an exception as part of the transaction receipt. The _; statement is
used to indicate where the body of the target function should be inserted. A modifier can be
used in the declaration signatures of multiple functions.

1 contract Bank {
2 address manager;
3
4 modifier onlyManager {
5 require(msg.sender == manager);
6 _;
7 }
8
9 function destroy() public onlyManager {
10 // Sends the SELFDESTRUCT opcode to the contract,
11 // i.e. deletes it.
12 selfdestruct(owner);
13 }
14
15 // Equivalent:
16 function destroyNoModifiers() public {
17 require(msg.sender == manager);
18 selfdestruct(owner);
19 }
20 }

Listing 2.2: An Example Use of Modifiers in Solidity. destroy()’s body can only be executed
if the caller’s address is the one stored in manager.

Modifiers may also take arguments and mutate the contract’s state. Let’s consider a more
complex example in Listing 2.3. In this scenario, we would like a function to execute only

1http://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html#
subcurrency-example
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when all accounts a in some set of addresses S have called it. We use state variables to record
which addresses have called each function.

atLeastManagers ensures that the target function’s body will only be executed if all the ad-
dresses in the local managers array have called the target function. The functionID parameter
is needed in the case where the modifier is being used for different functions. The manager-
Approvals state field maps a function identifier to another mapping which indicates which
addresses have called the function.

In Solidity, the keys of a mapping cannot be retrieved. We use another mapping, ap-
provalKeysForFunctionID, which stores the keys (addresses) in managerApprovals’ domain
mapping. When all the managers have called the target function, we need to reset the appro-
priate state fields (lines 20–25). We use the addresses from approvalKeysForFunctionID to
reset the domain mapping in managerApprovals. We then clear approvalKeysForFunctionID
at the appropriate entry using the delete operation.

1 contract Bank {
2 address managerA;
3 address managerB;
4 address[] importantManagers = [managerA, managerB];
5
6 mapping(string => mapping(address => bool)) managerApprovals;
7 mapping(string => address[]) approvalKeysForFunctionID;
8
9 modifier atLeastManagers(string functionID, address[] managers) {
10 managerApprovals[functionID][msg.sender] = true;
11 approvalKeysForFunctionID[functionID].push(msg.sender);
12
13 for (uint i = 0; i < managers.length; i++) {
14 if (!managerApprovals[functionID][managers[i]]) {
15 revert();
16 }
17 }
18
19 // Reset helper state fields.
20 for (uint j = 0; j < approvalKeysForFunctionID[functionID].length; j++) {
21 address a = approvalKeysForFunctionID[functionID][j];
22 managerApprovals[functionID][a] = false;
23 }
24
25 delete approvalKeysForFunctionID[functionID];
26
27 // Execute function body.
28 _;
29 }
30
31 function destroy() atLeastManagers("destroy", importantManagers) {
32 selfdestruct(msg.sender);
33 }
34 }

Listing 2.3: An Example Use of Modifiers Taking Arguments, and Mutating the Contract’s
State in Solidity.
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Attribute Description

pure The function cannot read or write to the contract’s stor-
age.

constant The function cannot write to the contract’s storage.

None The function can read and write to the contract’s storage.

payable The function can read and write to the contract’s storage,
and accept a Wei value. The Wei value is implicitly added
to the account’s balance.

Figure 2.6: Function Attribute Modifiers

Function Return Values

Functions in Solidity return a specified number of values. For example, function foo()
returns(uint, address) declares a function which returns two values. For functions which
return values, a return statement does not explicitly have to appear in their body: the default
values (0 for numbers and addresses) for the return types will be returned instead, as shown
in listing 2.4. It is also possible to name return parameters, and use them as local variables.
Their final value is returned from the call.

1 contract A {
2 function foo() returns(uint) {
3 // implicitly returns 0.
4 }
5
6 function bar() returns(uint, address) {
7 // return 0: type error
8 return (0, 0)
9 }
10
11 function bar() returns(uint a, uint b) {
12 a = 2
13 b = 10 + a
14 }
15 }

Listing 2.4: Returning Functions in Solidity

State Mutation and Visibility

Functions signatures can contain attributes to specify how they are allowed to access the
contract’s state, and their visibility by other contracts.

State mutation. Figure 2.6 presents the different function attributes which can be used in
Solidity. A function may only have one mutation attribute.

1 contract A {
2 function foo() constant {}
3 }

Listing 2.5: A Constant Function in Solidity.
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Modifier Description

external The function can only be called by external contracts
through message calls (more details in section 2.2.3).

public The function can be called internally or externally.

private The function can only be called internally.

Figure 2.7: Function Mutation Modifiers (Omitting internal)

Visibility. Figure 2.7 presents the different visibility modifiers which can be used in Solid-
ity. A function may only have one visibility modifier. Functions declared without visibility
modifiers are implicitly public.

1 contract A {
2 function foo() constant public {}
3 }

Listing 2.6: A Constant Public Function in Solidity.

Note: declaring a field as public will synthesise a getter function for it.

Fallback Functions

A Solidity contract can define a fallback function, an unnamed function. When an account
calls into a function of a contract for which the signature is not defined, the fallback function
is called. Listing 2.7 presents a fallback function.

1 contract A {
2 // Fallback function.
3 function () public payable {
4 // body
5 }
6 }
7
8 contract B {
9 function foo() {
10 new A().call("foo") // calls A’s fallback function, as "foo" is not defined
11 new A().call() // calls A’s fallback function
12 }
13 }

Listing 2.7: Fallback Function in Solidity.

2.2.3 Calls to Functions

Solidity functions can perform calls to other functions defined in the same contract or another
contract.

Internal Calls

Calls to functions defined in the same contract are simply executing through JUMP instruc-
tions.
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External Calls

A Solidity contract C can call functions from an external contract D, via a message call. The
most common way to perform a message call is through expressions such as d.foo(), where
d is bound to the address of a contract D, and foo() is declared in D. When executing a
function in D, the caller’s address (msg.sender) is bound to C’s address. It is also possible
to attach a Wei value to an external call, through an expression such as d.foo.value(100)()
to send 100 Wei.

In Listing 2.8, contract A instantiates a contract of type B on line 2. This is allowed since
the source code of B is included when compiling A. The field B is internally represented by an
address.

1 contract A {
2 B public b = new B();
3
4 // Fallback function.
5 function A() public payable {}
6
7 function bGetCaller() public constant returns(address) {
8 // Returns A’s address.
9 return b.getCaller();
10 }
11
12 function send(uint amount) public {
13 b.receive.value(amount)();
14 }
15 }
16
17 contract B {
18 function receive() public payable {}
19
20 function getCaller() public constant returns(address) {
21 return msg.sender;
22 }
23 }

Listing 2.8: External Function Calls in Solidity

Note: The special this variable is bound to the contract’s address. Therefore, a call to
this.foo() performs a message call to itself, and msg.sender in foo is now bound to the
contract’s address. This is different to performing the foo() call, which is internal and does
not modify msg.sender. External calls to this are disallowed in the contract constructor’s
body.

Low-level Calls

External function calls as described above are translated to low-level function calls. The call
function can be executed with an address as the receiver, and takes as the first parameter
the first four bytes of the Keccak-256 hash of the target function’s canonicalised function
signature1.

1The canonicalised identifier of a function’s signature is of the form f(t1, t2, t3...) where f is the function’s
identifier, and t1, t2, t3, ... are the types of the function parameters. This is explained in more detail in 6.7.3.
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Another variant of low-level function calls is supported, namely delegate calls. Delegate
calls are similar to regular calls, except that any mutation of state in the target function is
performed in the caller’s storage.

Both call and delegatecall return a boolean value denoting whether or not the call succeed
with exceptions. Listing 2.9 demonstrates both types of calls. A call to bCall will set B’s b to
1, and a call to bDelegateCall will set A’s a to 2. Notice how delegate calls access a contract’s
storage through offsets, which is why the name of B’s first field is irrelevant.

1 contract A {
2 uint256 public a;
3 B public b = new B();
4
5 function bCall() public {
6 // Sets B’s first field to 1.
7 b.setB(1);
8 }
9
10 function bDelegateCall() public {
11 // Sets A’s first field to 2.
12 if (!b.delegatecall(bytes4(keccak256("setB(uint256)")), 2)) {
13 revert();
14 }
15 }
16 }
17
18 contract B {
19 uint256 public b;
20 function setB(uint256 value) public {
21 b = value;
22 }
23 }

Listing 2.9: Calls and Delegate Calls in Solidity

2.2.4 Interfaces

Solidity contracts can inherit from other contracts, with the semantics being similar to tra-
ditional object-oriented programming languages. Interfaces are contracts which can only
declare function signatures, as shown in Listing 2.10.

1 interface I {
2 function foo() returns(uint256);
3 }

Listing 2.10: A Solidity Interface

2.2.5 Application Binary Interface (ABI)

The Solidity Application Binary Interface [34] specifies how to encode calls to functions to
populate the data field of a transaction. At a high-level, the first four bytes of the data
field represent the first four bytes of the Keccak-256 hash of the target function’s signa-
ture. The rest of the data bytes represent the arguments’ values given to the function. The
ABI specification [34] describes the encoding for dynamic types (arrays and dictionaries) as
well.
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2.2.6 Contract S from subsection 2.1.9

Listing 2.1.9 provides an example implementation of the S contract from 2.1.9. From an
Ethereum client, one can monitor an instance of S using its address, and listen for the
ReceivedSecrets event.

1 contract Secrets {
2 address addressA; string secretA; bool receivedA;
3 address addressB; string secretB; bool receivedB;
4
5 event ReceivedSecrets(string messageA, string messageB);
6
7 function Secrets(address a, address b) public {
8 addressA = a;
9 addressB = b;
10 }
11
12 modifier onlyAorB {
13 if (msg.sender != addressA && msg.sender != addressB) {
14 revert();
15 }
16 _;
17 }
18
19 function receive(string secret) onlyAorB public {
20 if (msg.sender == addressA) {
21 secretA = secret;
22 receivedA = true;
23 } else if (msg.sender == addressB) {
24 secretB = secret;
25 receivedB = true;
26 }
27
28 if (receivedA && receivedB) {
29 ReceivedSecrets(secretA, secretB);
30 }
31 }
32 }

Listing 2.11: An Example Implementation of the S Contract from 2.1.9 in Solidity.

2.3 Attacks Against Solidity Contracts

In this section, we explore different attacks which affected contracts written in Solidity.

2.3.1 Call Reentrancy: TheDAO Attack

TheDAO was a decentralised autonomous organisation (DAO) which operated on Ethereum’s
network. One of TheDAO’s smart contracts contained a vulnerability which allowed an
attacker to gain possession of approximately 3.6 million Ether, equivalent to approximately
880 million dollars at the time of writing. The incident resulted in a hard fork1 of Ethereum’s

1A hard fork is a process which results in a blockchain being split (see section 2.1.6). Concretely, this alters
the state of the blockchain, breaking its append-only property. A hard fork was performed on Ethereum’s
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blockchain. Newspapers [35] and researchers [7], such as Philip Daian from Cornell University,
attributed the vulnerability to poor design of Solidity: “This was actually not a flaw or exploit
in the DAO contract itself: technically the EVM was operating as intended, but Solidity was
introducing security flaws into contracts that were not only missed by the community, but
missed by the designers of the language themselves.”. Peter Daian mainly blamed [36] the
unintuitive semantics of the call method: “you cannot assume anything about the state of
your contract after the external call is executed.”

TheDAO’s attack was due to an exploit around call reentrancy. In EVM, when a function
executes an external function call, it pauses execution until the call has completed. Call
reentrancy occurs when the external function calls back into the original call. Control flow
thus reenters the original call.

Listing 2.12 presents a contract, Vulnerable, which is vulnerable to call reentrancy. Users
send Wei to this contract through the deposit function. The withdraw function retrieves the
balance of the given account, transfers the Ether to the caller’s Ethereum account, then sets
the caller’s balance to zero. On line 13, an external call is performed using the low-level call
function, attaching a Wei value. As no function signature is given to call, the target’s fallback
function is called. The vulnerability is enacted when the target’s fallback function calls back
into withdraw(address). Control flow executes lines 11–13 again, without having set the
recipient’s balance to 0. Vulnerable thus sends balance again, and the process repeats itself
until the transaction’s gas is exhausted. If enough gas is provided, the entire smart contract’s
Ether balance is sent to the attacker. The balances mapping remains unchanged except for
the attacker’s balance, which becomes 0. This leads to the state being inconsistent with the
smart contract’s actual Ether balance.

1 contract Vulnerable {
2 mapping(address => uint256) public balances;
3
4 function Vulnerable() public payable {}
5
6 function deposit(address recipient) public payable {
7 balances[recipient] += msg.value;
8 }
9
10 function withdraw(address recipient) public {
11 uint256 balance = balances[recipient];
12 recipient.call.value(balance)();
13 balances[recipient] = 0;
14 }
15 }
16
17 contract Attacker {
18 uint256 public total;
19 function () public payable {
20 total += msg.value;
21 msg.sender.call(bytes4(keccak256("withdraw(address)")), this);
22 }
23 }

Listing 2.12: Code Reentrancy Vulnerability in Solidity

TheDAO attack could have been prevented if line 12 and 13 were swapped. This would

blockchain for transactions involving the theft of money due to TheDAO attack to be “forgotten”. This
raised controversy as it violated the initial motivations behind running a decentralised blockchain.
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have enforced the update to the contract’s state to happen before performing the dangerous
external call.

2.3.2 Function Visibility Modifiers Semantics: the First Parity Multi-sig
Wallet Hack

The Parity Multi-signature (multi-sig) Wallet is a smart contract which allows accounts to
control a common wallet. Due to a bug, an attacker managed to exploit the wallet to steal
over 82 millions dollars worth of Ether [8].

The wallet ensures that, for example, all owners of a wallet need to accept a transaction before
it can get executed (similarly to Listing 2.3). The library code Parity (the organisation behind
the wallet) provided was written as a contract. Users would create their own wallet contract,
and delegate all the functions to the library instance.

A simplified version is shown in Listing 2.13. Wallet’s constructor takes as arguments the
owner of the wallet, and Parity’s library contract address. It performs a delegatecall to
initWallet(address), which sets the owner in Wallet. initWallet(address) was intended
to be called only once, in the constructor.

A transaction to Wallet with the data field containing initWallet(address)’s hashed sig-
nature would trigger the contract’s function fallback to be called (Wallet doesn’t define a
function of that signature). Line 34 simply delegates the call to WalletLibrary with the data
field from the transaction left intact. Because of the semantics of delegatecall, the function
signature in data would in fact match the initWallet function in WalletLibrary, allowing
the caller to set themeselves as the owner of the contract.

1 contract WalletLibrary {
2 address owner;
3
4 // Called by constructor. Visibility modifier defaults to ’public’.
5 function initWallet(address _owner) {
6 owner = _owner;
7 // More setup.
8 }
9
10 function () public payable {}
11
12 function withdraw(uint amount) external returns (bool success) {
13 if (msg.sender == owner) {
14 // body
15 }
16 }
17 }
18
19 contract Wallet {
20 address owner;
21 address walletLibrary;
22
23 function Wallet(address _owner, address _library) public {
24 walletLibrary = _library;
25 walletLibrary.delegatecall(bytes4(keccak256("initWallet(address)")), _owner);
26 }
27
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28 function withdraw(uint amount) public returns (bool success) {
29 return walletLibrary.delegatecall(bytes4(keccak256("withdraw(uint)")), amount);
30 }
31
32 // Fallback function.
33 function () public payable {
34 walletLibrary.delegatecall(msg.data);
35 }
36 }

Listing 2.13: WalletLibrary and Wallet in Solidity

This attack could have been prevented by adding a modifier to initWallet ensuring the
function is only called during its Initialisation phase.

2.3.3 Using a Contract as a Global Library: the Second Parity Multi-sig
Wallet Hack

The same Parity Multi-sig contract was affected by another attack, which this time caused
the loss of 260 million dollars worth of Ether. Consider Listing 2.14, the same WalletLibrary
code from Listing 2.13, except that initWallet now has a modifier (only_uninitialised)
which ensures the function can only be called if the contract has not be initialised yet. The
addition of this modifier followed the attack mentioned previously. As a reminder, Parity
runs a single instance of WalletLibrary, and each user deploys their own Wallet contract,
which delegates its calls to the WalletLibrary.

The assumption from the Parity developers was that WalletLibrary would only be inter-
acted with through delegate calls (mutating the caller’s state rather than the library’s state).
However, when deploying WalletLibrary, initWallet was in fact not called. A user from
the Internet then decided to call initWallet, which succeeded since the condition from
only_uninitialised was met. At that point, the user was set as the owner of the library
itself, and executed the SELFDESTRUCT opcode on it, which terminated the contract. As a con-
sequence, all of the wallets delegating their calls to WalletLibrary were frozen: the instance
of WalletLibrary they were delegating was destroyed.

1 contract WalletLibrary {
2 address owner;
3
4 // Can only be called once.
5 function initWallet(address _owner) only_uninitialised {
6 owner = _owner;
7 // More setup.
8 }
9
10 function () public payable {}
11
12 function withdraw(uint amount) external returns (bool success) {
13 if (msg.sender == owner) {
14 // body
15 }
16 }
17 }

Listing 2.14: WalletLibrary and Wallet in Solidity
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The attack could have been prevented by using a Solidity library construct, which has
been introduced following this attack. A Solidity library is a contract which is meant to
be interacted with only using delegatecalls, and does not have any associated contract
state. This would ensure that initWallet could not have been called directly on the library
contract.

Alternatively, adding a constructor to WalletLibrary which called initWallet would have pre-
vented the issue, as the only_uninitialised modifier would prevent further calls to it.

2.3.4 Unchecked Calls: King of the Ether Throne

The KingOfTheEtherThrone smart contract keeps track of a current king. An account needs
to pay more Wei than the king paid in order to dethrone him. We consider a simplified
version of the problem in Listing 2.15, in which the king and claimPrice keep track of the
king and the number of Wei which allowed him to become king. When a king is dethroned,
his claimPrice value is sent back to him. The claim function is called by an account which
wishes to dethrone the king.

A vulnerability allows a king to be dethroned without receiving his claimPrice back. The
issue relies on line 8: the Solidity send function returns a boolean indicating whether the
transaction was successful. The transaction might fail due to an out-of-gas exception: the
king’s address may host a smart contract containing an expensive fallback function. When
an out-of-gas exception occurs, any Wei value is returned to the caller, and thus the king’s
account is not credited back and the King of the Ether Throne keeps the Wei.

1 contract KingOfTheEtherThrone {
2 address public king;
3 uint256 public claimPrice;
4
5 function claim() payable public {
6 if (msg.value <= claimPrice) { revert(); }
7
8 king.send(claimPrice);
9 king = msg.sender;
10 claimPrice = msg.value;
11 }
12 }

Listing 2.15: WalletLibrary and Wallet in Solidity

The Solidity compiler now warns the developer when the return value of a sensitive function
is not checked. A simple fix in this case is to check the return value of send and call the
REVERT operation in the negative case.

2.3.5 Arithmetic Overflows: Proof of Weak Hands Coin

The PoWH Coin [37] smart contract implements a currency. 866 Ether (about $476K) was lost
due to an arithmetic overflow following an addition. Arithmetic overflows are a common bug
in smart contracts, as EVM’s arithmetic operators have wrap-around semantics by default.
The Solidity developers are looking into implementing operators which crash when overflows
occur1. The third-party Solidity SafeMath library2 implements methods to perform arithmetic

1https://github.com/ethereum/solidity/issues/796
2https://github.com/Openzeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
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operations safely.
1 contract PoWHCoin {
2 function sell(uint256 amount) internal {
3 var numEthers = getEtherForTokens(amount);
4 // remove tokens
5 totalSupply -= amount;
6
7 // If balanceOfOld[msg.sender] < amount, the value will overflow and be close
8 // to the largest 256-bit number, awarding a very large amount of tokens to
9 // msg.sender.
10 balanceOfOld[msg.sender] -= amount;
11
12 // fix payouts and put the ethers in payout
13 var payoutDiff = (int256) (earningsPerShare * amount + (numEthers * PRECISION));
14 payouts[msg.sender] -= payoutDiff;
15 totalPayouts -= payoutDiff;
16 }
17 }

Listing 2.16: Arithmetic Overflows

2.3.6 Transaction-Ordering Dependencies

Miners have the freedom of choosing any transaction they wish from the Ethereum transaction
pool. Consider two transactions Ti and Tj targeting the same smart contract. The order in
which the transactions are processed can lead to different final storage states. In Listing 2.17,
we consider a straightforward contract, Puzzle, in which an account is rewarded if it finds
a secret string. If an account A calls checkResult and receiveReward, the correct account
would be rewarded only if checkResult was executed before receiveReward. In the case
where the transactions would be executed in the other order, the previous winner would have
been rewarded. Transaction-ordering dependencies can be thought of as data-races between
transactions on the blockchain.

1 contract Puzzle {
2 address winner;
3 string secret = "dQw4w9WgXcQ";
4 uint256 reward = 100;
5
6 function checkResult(string guess) {
7 if (isCorrect(guess)) {
8 winner = msg.sender;
9 }
10 }
11
12 function receiveReward() {
13 uint256 winnerReward = reward;
14 reward = 0;
15 winner.send(winnerReward);
16 }
17
18 function addReward() payable {
19 reward += msg.value;
20 }
21 }

Listing 2.17: Transaction-Ordering Dependency in Solidity
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This issue can be mitigated by sending the reward directly in checkResult, ensuring the
winner variable would be set correctly.

2.4 Current Attempts to Prevent Vulnerabilities

A vast amount of Ether has been lost due to the attacks mentioned previously. Previous
work has been focused on finding these vulnerabilities early in the development cycle.

2.4.1 Analysis Tools for Solidity and EVM bytecode

There has been research around building analysis tools to detect vulnerabilities in smart
contracts.

Oyente Dynamic Analysis. The Oyente [11] symbolic execution tool aims to find vul-
nerabilities in smart contracts by analysing their EVM bytecode. Symbolic execution is a
technique which represents variable in a program by symbolic expressions. Paths are gen-
erated by accumulating constraints which the symbolic expressions form. From the type of
bugs Oyente aims to find, such as reentrancy call issues, the authors of the tool claim they
have found that 50% of smart contracts on Ethereum’s network has at least one vulnerability.
Oyente finds issues such as timestamp dependencies (when a smart contract relies on the time
of the operating system of the miner which executes the contract), mishandled exceptions,
and detects reentrancy calls.

Mythril Dynamic Analysis. The Mythril [12] tool is another popular analyser for So-
lidity contracts. It uses concolic analysis, which uses symbolic analysis to determine execution
paths. Mythril tries to find a variety of vulnerabilities, such as timestamp dependencies, in-
teger overflows, and reentrancy issues.

The Remix IDE. The online Remix [38] Integrated Development Environment (IDE) for
Solidity, maintained by the Ethereum organisation, has a built-in code analyser which aims
to find bugs. The analyser will, among other tasks, attempt to find reentrancy bugs and
check for correct usage of low-level calls. In our testing, when running on the examples given
in section 2.3, the Remix Analyser warned when low-level calls’ return value was not checked,
but was not able to find any reentrancy call issues.

Converting to F*. There has been research about formally verifying smart contracts us-
ing F* [39]. The approach involves translating (a supported subset of) Solidity code to F*,
decompiling EVM bytecode to F*, then checking equivalence between the two translations.
This aims to verify whether the produced bytecode matches the Solidity code’s intended be-
haviour. The goal of the research was to show how F*’s type system is flexible enough to
verify developer-encoded properties.

Scilla. Scilla [40] is a continuous passing style–based intermediate representation language
for smart contracts. The goal is to convert Scilla code to the Coq theorem prover to produce
formal proofs of certain properties of the contract.
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2.4.2 Improving upon Solidity and EVM bytecode

Since the creation of Ethereum, multiple programming languages have attempted to improve
the smart contract programming experience. Lisp Like Language [18] (LLL), developed by
the Ethereum Foundation (the creators of Ethereum), is a low-level language which pro-
vides a Lisp-like syntax to program smart contracts. The project was abandoned in favour
of higher level languages. Serpent [20] is a high-level programming language with a syntax
similar to Python’s. The project has been deprecated by the Ethereum Foundation due to its
numerous security issues [41]. Solidity, which attempted to solve the issues these program-
ming languages present, still allows writing unsafe code. Since Solidity, newer programming
languages have been developed:

Vyper. Vyper [21] is an experimental programming language inspired by Python, aiming to
provide developers with better security and more intuitive semantics than Solidity. However,
even though Vyper is safer to use, it does not present unique features tailored for contract
security.

Bamboo. The Bamboo [42] programming language allows reasoning about smart contracts
as state machines. Developers define which functions can be called in each state, and the
language provides constructs to specify changes of state explicitly. However, Bamboo does
not present any additional features geared towards the safety of programs.

IULIA. IULIA [43] is a low-level programming language developed by the developers behind
Solidity. The goal of IULIA is not to replace Solidity, but to be used as inline assembly
within Solidity code. The Solidity compiler developers are also aiming to use IULIA as an
Intermediate Representation (IR) of Solidity, to facilitate analysis and optimisations.

2.5 Remarks

The Ethereum platform allows the execution of versatile decentralised applications. The EVM
allows smart contract programmers to focus on programming and ignore the complexities of
blockchains and coordinating nodes in a very large network. Multiple programming languages
have attempted to facilitate the creation of smart contracts, but many allow writing unsafe
code. While program analysers for Solidity programs have attempted to find vulnerabilities,
they cannot pinpoint all the issues in programs. Newer languages aim to bring the experience
of developing traditional programs to Ethereum smart contracts. However, they are not
designed to address the challenges programmers must face when developing for Ethereum,
such as handling large quantities of money and not being updatable.

The attacks described in section 2.3 occur frequently, and can mostly be attributed to a mix
of human error and unintuitive language semantics. For most of the vulnerabilities we have
seen, we think a new language could help prevent them.

Call Reentrancy: TheDAO attack. This could have been avoided if Solidity provided
safe library functions for Ether transfers. For example, the implementation of safe transfer
operations would help ensure the contract’s state is updated before Ether leaves the smart
contract. For TheDAO, the runtime could execute lines 12 and 13 atomically in Listing 2.12.
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Function visibility modifiers semantics: the first Parity Multi-sig wallet hack. Due
to the programmer forgetting to specify the visibility of a function, Solidity chose to make
the function ’public’ by default. If Solidity did not expose functions to the public by default,
this issue would not have occurred. Furthermore, a language could have helped ensure that
the initWallet is only called during contract initialisation.

Using a contract as a global library: the second Parity Multi-sig wallet hack. The
problem is that a user was able to modify the state of a smart contract which was only meant
to be used as a library. This could be prevented by the use of a Solidity library, which is a
contract which does not have any associated state and is meant to be interacted with through
delegatecalls exclusively. The library contract would therefore not have an owner field in
its state, and its functions could not be called directly.

Unchecked calls: King of the Ether Throne. This vulnerability can be prevented by
the programming language disallowing the developer to discard the result of a function call
by default. This would enforce them to check for the return value of the send call.

Arithmetic overflows: Proof of Weak Hands Coin. This attack was possible due to
an integer value overflowing unexpectedly. We can prevent overflows by making arithmetic
operators cause an exception whenever overflows occur. We could also introduce a type rep-
resenting Ether which would provide safer transfer operations.

Transaction-ordering dependencies. This concurrency issue is difficult to fix at the
programming language–level. Traditional locking mechanisms do not apply in the smart-
contract-development environment, as the control flow of a contract cannot be paused and
resumed arbitrarily. Analysis tools could help find data-race issues, however.
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The Flint Programming Language

Ensuring a smart contract behaves correctly before deploying it is crucial, as Ethereum does
not allow updating them. Smart contracts handling millions of dollars worth of Ether have
been exploited, resulting in the loss of all of their funds. For TheDAO attack (see subsec-
tion 2.3.1), the history of the blockchain was rewritten to revert the malicious transactions,
violating Ethereum’s core decentralisation principle.

For traditional computer architectures, languages such as Java [13], Rust [16], and Pony [17]
have been designed to prevent writing unsafe code and introduced efficient runtime optimi-
sations for the platform they target. For instance, Java prevents direct access to memory,
Rust uses ownership types to efficiently free memory, and Pony uses reference capabilities
to prevent data races in concurrent programs. In contrast, even though the Ethereum plat-
form requires smart contract programmers to ensure the correct behaviour of their program
before deployment, it has not seen a language designed with safety in mind. Solidity and
others do not tailor for Ethereum’s unique programming model and instead, mimic exist-
ing popular languages like JavaScript, Python, or C, without providing additional safety
mechanisms.

We present Flint, a new programming language built for easily writing safe Ethereum smart
contracts. Flint is approachable to existing and new Ethereum developers, and presents a
variety of security features. The language requires programmers to protect their functions
from unauthorised accesses by using caller capabilities. Functions in Flint cannot mutate the
contract’s state by default, hence simplifying reasoning. The standard library offers Asset
types, which provide safe atomic operations to handle currency, ensuring the state of smart
contracts is always consistent.

The remainder of this chapter presents an overview of Flint. Chapters 4 and 5 detail the
design and implementation of caller capabilities and Asset types. Chapter 7 presents future
work for features which we have designed but not fully implemented yet, such as support for
type states, bounded loops, and the Flint Package Manager.
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3.1 Programming in Flint

A smart contract’s state is represented by its fields, or state properties. Its behaviour is
characterised by its functions, which can mutate the contract’s state. Public functions can
be called by external Ethereum users.

Flint’s syntax is focused on allowing programmers to write and reason about smart contracts
easily. Providing an intuitive and familiar syntax is essential for programmers to express their
smart contract naturally. As the source code of a smart contract is publicly available, it should
be easily understandable by its readers. The syntax is inspired by the Swift Programming
Language’s [15] syntax.

When developing Flint, we focused on the novel features aimed at smart contract security.
For this reason, some features which developers might expect from a programming language
and its compiler such as recursive data types or type inference have not been implemented
in the compiler. The code listings containing Flint code can be compiled using the latest
version of the Flint compiler, unless stated otherwise.

3.1.1 Declaring Contracts

The contents of this subsection are partly taken from Writing Safe Smart Contracts in Flint [25],
a paper we have written for the <Programming> 2018 conference.

When declaring a Flint smart contract, state properties are declared in isolation from the
functions. Programmers can ensure that no unnecessary state properties are declared. This is
important as state properties are stored in the smart contract’s persistent memory (storage),
which have high access costs.

Functions in Flint are not declared at the top level of a contract declaration. They must
be enclosed in a behaviour declaration block, which protects its functions from unauthorised
calls using caller capabilities. This forces programmers to first think about which parties
should be able to call their function before defining it. A user must have the caller capability
associated with the behaviour declaration block to call the block’s functions. The caller
capabilities feature is described in detail in Chapter 4.

We look at a FlightManager contract, which an airline might create to allow users to book
flights using Ether. In the event the airline needs to cancel a flight, an administrator should
be able to call a function to refund all the passengers. Since this contract handles currency,
we use the safe transfer operations provided by the Wei Asset type, which represents the
smallest denomination of Ether. For more details about Wei types and other Asset types,
see chapter 5.

When declaring the contract, we observe how Flint’s syntax requires programmers to write
their smart contact in a specific sequence of steps.

1. Declaring the contract’s state. The Address type represents an Ethereum address
(a user or another contract), Wei an Ethereum Wei (the smallest denomination of Ether)
and Seat a struct which we will define in the next section. We assign default values to the
allocations and amountPaid state properties.

1 contract FlightManager {
2 let flightID: String
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3 let admin: Address
4 var ticketPrice: Int
5 var allocations: [Address: Seat] = [:]
6 var amountPaid: [Address: Wei] = [:] // Records how much each passenger has paid.
7 }

2. Declaring the functions anyone can call. Functions are declared in caller capability
blocks. The function buy can be called by any user. The caller’s address is bound to the
caller local variable. The initialiser can only be called when the contract is created. Rules
for Initialisation are explained in 3.1.3. buy is public and can be called from outside the
contract. allocateSeat can only be called within the contract. buy is marked @payable as
it the caller to attach Ether when calling the function. The amount of Ether is part of the
Ethereum transaction and is not a function argument passed when calling buy. Flint thus
binds the value to the value parameter, which is marked implicit.

8 FlightManager :: caller <- (any) {
9 public init(flightID: String, admin: Address, ticketPrice: Int) {
10 self.flightID = flightID
11 self.admin = admin
12 self.ticketPrice = ticketPrice
13 }
14
15 @payable
16 mutating public func buy(implicit value: Wei) {
17 assert(value.getRawValue() == ticketPrice)
18 let seat: Seat = allocateSeat()
19 allocations[caller] = seat
20
21 // Record the received Ether in the contract’s state.
22 // ’value’ is passed by reference, and its contents are set to 0 after the transfer.
23 amountPaid[caller].transfer(&value)
24 }
25
26 mutating func allocateSeat() -> Seat {} // Definition omitted.
27 }

Similarly, we define functions which can only be called by the administrator, i.e., setTicket-
Price, and cancelFlight, which refunds all the passengers. When referring to state proper-
ties, the self. prefix can be used. When it is unambiguous whether an identifier refers to a
state property or a local variable, the self. prefix can be omitted.

28 FlightManager :: (admin) {
29 mutating public func setTicketPrice(ticketPrice: Int) {
30 self.ticketPrice = ticketPrice
31 }
32
33 mutating public func cancelFlight() {
34 for passenger in allocations.keys {
35 refund(passenger)
36 }
37 }
38 }

3. Declaring the functions passengers can call. The keys property of allocations
contains the addresses of all passengers. The cancelBooking function needs to be annotated
mutating as it modifies the contract’s state (refund is a mutating function).
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39 FlightManager :: passenger <- (allocations.keys) {
40 public func getSeatAllocation() -> Int {
41 return allocations[passenger].getSeatNumber()
42 }
43
44 mutating public func cancelBooking() {
45 refund(passenger)
46 }
47 }

4. Refunding users. The Wei type is a Flint Asset and therefore supports a set of safe
atomic transfer operations. These are described in more detail in chapter 5. On line 51,
we read the state to determine how much Wei the passenger has paid, and transfers that
amounting to a new local variable, refund. amountPaid[passenger] in the contract’s state is
cleared as part of the same atomic operation. We then transfer the contents of refund to the
Ethereum address passenger. The value of refund is 0 after send is called.

48 FlightManager :: (admin, allocations.keys) {
49 mutating func refund(passenger: Address) {
50 // Transfer Wei from the state to a local var to reflect the contract losing Ether.
51 let refund = Wei(&amountPaid[passenger])
52 allocations[passenger] = nil
53 send(passenger, &refund)
54 }
55 }

The full example is available on Flint’s GitHub repository [24]. We have not implemented
loops yet in the compiler yet, as they require design work to ensure Flint code can still be
formally verified easily. We propose a solution in subsection 7.1.2. We also do not support
accessing the keys properties of dictionaries yet, due to performance concerns.

3.1.2 Declaring Structs

Programmers can declare structs in Flint to group state and functions. Struct functions
are not protected by caller capabilities as they can only be called by (protected) contract
functions, and are required to be annotated mutating if they mutate the struct’s state.

We define the Seat struct:

1 struct Seat {
2 var number: Int
3
4 init(number: Int) {
5 self.number = number
6 }
7
8 func getNumber() -> Int {
9 return number
10 }
11 }

Struct values can be declared as state properties or local variables, and are initialised through
their initialiser (e.g., let seat = Seat(8)). When stored as a state property, the struct’s data
resides in EVM storage. When stored as a local variable, it resides in EVM memory, and a
pointer is allocated on the EVM stack.
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Passing Structs as Function Arguments

When struct values are passed as function arguments, they are passed by value by default.
That is, on function entry, a struct is copied in storage or memory (depending on whether it
is a state property or a local variable) before executing the function’s body. It is also possible
to pass struct values by reference, using the inout keyword. The struct is then treated as an
implicit reference to the value in the caller. We have implemented support for passing structs
by reference in the compiler (see subsection 6.8.1), and have not implemented pass by value
yet. Structs which contain properties of the same type, recursive structs, are not supported
yet.

Listing 3.1 demonstrates the semantic differences between pass by value and pass by refer-
ence.

1 func foo() {
2 let s = S(8)
3 byValue(s) // s.x == 8
4 byReference(s) // s.x == 10
5 }
6
7 func byValue(s: Seat) {
8 s.x = 10
9 }
10
11 func byValue(s: inout Seat) { // s is an implicit reference to ’s’, from line 2.
12 s.x = 10
13 }

Listing 3.1: Pass by Value and Pass by Reference

3.1.3 Initialisation

Each smart contract and struct must define a public initialiser. All of the state properties
must be initialised before the initialiser returns. State properties can be declared with a
default value, e.g., for allocations and amountPaid, which are assigned dictionary empty
literals ([:]), or in the initialiser, for flightID, admin, and ticketPrice. let constants must
be assigned exactly once. Functions cannot be called in initialisers, as calling them might
result in accessing uninitialised state properties.

Property: State Property Initialisation. Each state property v in a type T (contract
or struct) must be initialised before the initialiser returns.

IsInitialised(T) , ∀v ∈ StateProperties(T) . IsInitialised(v)

where IsInitialised(v) indicates whether the property v has been assigned a default value
when declared, or has been assigned in the initialiser of the type T .

For structs, if all state properties are assigned a default value at the declaration site, Flint
synthesises an empty initialiser.
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3.2 Type System

Flint is a statically-typed language with a simple type system, without support for sub-
typing. We are planning to implement type inference in the compiler. We are also planning
to support Rust-style traits (or Java-style interfaces) with default implementation of functions
as a mechanism to share code between structs and contracts.

Flint supports basic types (Figure 6.3) and dynamic types (Figure 3.2). Dynamic types can
be passed by value or by reference.

Type Description

Address 160-bit Ethereum address

Int 256-bit unsigned integer

Bool Boolean value

String String value

Void Void value

Figure 3.1: Flint Basic Types

Type Description

Array Dynamically-sized array. [T] refers to an array of element type T.

Fixed-size
Array

Fixed-size memory block containing elements of the same type. T[n]
refers to an array of size n, of element type T.

Dictionary Dynamically-size mappings from one key type to a value type. [K:
V] is a dictionary of key type K and value type V.

Structs Struct values, including Wei, are considered to be of dynamic type.

Figure 3.2: Flint Dynamic Types

3.2.1 Events

Type Description

Event<T...> An Ethereum event to notify clients listening to a transaction. Takes
an arbitrary number of type arguments.

Figure 3.3: Flint Event Type

3.3 Mutation and Constants

Smart contracts can remain in activity for a large number of years, during which a large
number of state mutations can occur. To aid with reasoning, Flint functions cannot mutate
smart contracts’ state by default. This helps avoid accidental state mutations when writing
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the code, and allows readers to easily draw their attention to the mutating functions of the
smart contract.

Let-constants ensure state properties and local variables are not accidentally mutated.

3.3.1 Mutating Functions

The Flint compiler requires functions which mutate the state of a function to be annotated
with the mutating keyword. Functions which make calls to mutating functions are also
considered to be mutating.

Definition: Mutating Functions. A function f has to be declared mutating if it assigns
a value to a state property of the type T (contract or struct) it is declared in, or if it calls a
mutating function g.

IsMutating(f, T) ,∀s ∈ Body(f) (IsAssignmentToState(s, T))∨

∃c ∈ FunctionCalls(s)
(¬IsDeclaredLocally(Receiver(c))∧
IsMutating(MatchingDecl(c), ReceiverType(c))

)
where
IsAssignmentToState(s, T) indicates whether the statement s assigns to a property of T,
IsDeclaredLocally(v) indicates whether v is declared as a local variable,
FunctionCalls(s) is the set of function calls in statement s,
Receiver(c) is the receiver of the function call c,
ReceiverType(c) is the type of the receiver of the function call c,
MatchingDecl(c) is the matching declaration for a function call c.

In addition, functions which do not mutate state but are marked mutating trigger a warn-
ing.

In Listing 3.2, the function increment()mutates the state of the smart contract, but is not de-
clared mutating. This triggers an error, shown in Listing 3.3. getValue() is marked mutating
even though it does not mutate the state of the contract, which triggers a warning.

1 contract Counter {
2 var value: Int = 0
3 }
4
5 Counter :: (any) {
6 // This is a mutating function.
7 mutating public func set(value: Int) {
8 self.value = value
9 }
10
11 func increment() {
12 value += 1 // We are mutating state, as ’value’ refers to a state property.
13 }
14
15 // This function is declared mutating but does not mutate any state.
16 mutating func getValue() -> Int {
17 return value
18 }
19

40



3.3. Mutation and Constants

20 // Initialiser omitted.
21 }

Listing 3.2: Mutating Functions

The compiler produces the following output:

Warning in counter.flint:
Function does not have to be declared mutating: none of its statements are mutating at line

16, column 3:
mutating public func getValue() -> Int {
^^^^^^^^

Error in counter.flint:
Use of mutating statement in a nonmutating function at line 12, column 5:

value += 1
^^^^^

Failed to compile.

Listing 3.3: Compiler Output for Invalid Mutation Declarations, for the code in Listing 3.2.

The full example is available at https://github.com/franklinsch/flint/blob/master/examples/
valid/counter.flint.

3.3.2 Let-constants

The var keyword can be used to declare state properties or local variables which can be
mutated. The let keyword declares a constant, as shown in Listing 3.4. airline is not
initialised at the declaration site, thus needs to be assigned in the initialiser. It cannot be
reassigned on line 14. maxPassengers cannot be assigned a value in the initialiser, as a value
has already been assigned to it on line 3.

1 contract Flight {
2 let airline: String
3 let maxPassengers: Int = 250
4 var numPassengers: Int = 0
5 }
6
7 Flight :: (any) {
8 public init(airline: String) {
9 self.airline = airline
10 self.maxPassengers = 10 // Invalid as ’maxPassengers’ is assigned on line 3.
11 }
12
13 mutating func setAirline(name: String) {
14 self.airline = name // Invalid as ’airline’ is a let-constant.
15
16 let x: Int = 1
17 x = 2 // Invalid as ’x’ is a let-constant.
18 }
19 }

Listing 3.4: Let-constants

The compiler produces the following output:

Error in test.flint:
Cannot reassign to value: ’maxPassengers’ is a ’let’ constant at line 10, column 10:
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self.maxPassengers = 10
^^^^^^^^^^^^^

Note in test.flint:
’maxPassengers’ is declared here at line 3, column 3:
let maxPassengers: Int = 250
^^^^^^^^^^^^^^^^^^^^^^

Error in test.flint:
Cannot reassign to value: ’airline’ is a ’let’ constant at line 14, column 10:

self.airline = name // error
^^^^^^^

Note in test.flint:
’airline’ is declared here at line 2, column 3:
let airline: String
^^^^^^^^^^^^^^^^^^^

Error in test.flint:
Cannot reassign to value: ’x’ is a ’let’ constant at line 17, column 5:

x = 2
^

Note in test.flint:
’x’ is declared here at line 16, column 5:

let x: Int = 1
^^^^^^^^^^

Failed to compile.

Listing 3.5: Compiler Output for Invalid Reassignments to Let-constants, for the Code in
Listing 3.4.

3.4 Standard Library

3.4.1 Global Functions and Structs

The Flint Standard Library is available under the stdlib/ directory of the Flint GitHub
repository [24].

The standard library defines the Wei type. More information about its safe transfer operations
is available in chapter 5.

We also define a set of global functions, shown in Figure 3.4. Global functions are defined
in the special Flint$Global struct in stdlib/Global.flint and are imported globally by the
compiler.

Function Description

send(address: Address,
value: inout Wei)

Sends value Wei to the Ethereum address address, and
clears the contents of value.

fatalError() Terminates the transactions with an exception, and revert
any state changes.

assert(condition: Bool) Ensures condition holds, cause a fatalError().

Figure 3.4: Flint Global Functions
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3.4.2 Safe Arithmetic Operators

Safe arithmetic operators are also provided. The +, -, and * operators throw an exception and
abort execution of the smart contract when an overflow occurs. The / operator implements
integer division. No underflows can occur as we do not support floating point types yet.
The performance overhead of our safe operators are low, as described in our evaluation (see
chapter 8).

Property: Safe Arithmetics. Let Z/2256 be the set of integers between 0 and 2256 − 1.
Let +, −, ∗, / denote the arithmetic operators of Flint, +,−, ∗, / refer to the mathematical
operators, and  denotes the evaluation of an expression. If a computation does not follow
the following rules (e.g., the evaluation causes an overflow), an exception is thrown and the
Ethereum transaction is aborted with an exception.

∀a, b, c ∈ Z/2256 a+b c =⇒ a+ b = c

∀a, b, c ∈ Z/2256 a−b c =⇒ a− b = c

∀a, b, c ∈ Z/2256 a∗b c =⇒ a ∗ b = c

∀a, b, c ∈ Z/2256 a/b c =⇒ a/b = c

In rare cases, allowing overflows is the programmer’s intended behaviour. Flint also supports
overflowing operators, &+, &-, and &*, which will not crash on overflows.

3.4.3 Payable Functions

When a user creates a transaction to call a function, they can attach Ether to send to
the contract. Functions which expect Ether to be attached when called must be annotated
with the @payable annotation. When adding the annotation, a parameter marked implicit
of type Wei must be declared. implicit parameters are a mechanism to expose information
from the Ethereum transaction to the developer of the smart contract, without using globally
accessible variables defined by the language, such as msg.value in Solidity. This mechanism
allows developers to name implicit variables themselves, and do not need to remember the
name of a global variable.

In Listing 3.6, the number of Wei attached to the Ethereum transaction performing the
receiveMoney call is bound to the implicit variable value.

1 @payable
2 public func receiveMoney(implicit value: Wei) {
3 doSomething(value)
4 }

Listing 3.6: A Payable Function

Payable functions may have an arbitrary number of parameters, but exactly one can to be
implicit of currency type.

3.4.4 Events

JavaScript applications can listen to events emitted by an Ethereum smart contract. When
emitting an event, smart contracts can attach additional information. In the case of a money
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transfer for instance, the event didTransferComplete(caller, destination, amount) can be
emitted to notify JavaScript clients of a transfer of 30 Wei.

Events are declared in contract declarations. They are declared as special state properties
which cannot be assigned. The Event type takes generic arguments, corresponding to the
types of values attached to the event. An example is shown in Listing 3.7.

1 contract Bank {
2 var balances: [Address: Int]
3 let didCompleteTransfer: Event<Address, Address, Int> // (origin, destination, amount)
4 }
5
6 Bank :: caller <- (any) {
7 mutating func transfer(destination: Address, amount: Int) {
8 // Omitting the code which performs the transfer.
9
10 // A JavaScript client could listen for this event.
11 didCompleteTransfer(caller, destination, amount)
12 }
13 }

Listing 3.7: Using EVM Events

3.5 Remarks

3.5.1 Definitions and Safety Properties

We summarise the safety properties which Flint guarantees. No Unauthorised Inter-
nal Calls (with the notion of Compatibility) and Asset Type Operations are defined in
chapter 4 and chapter 5.

Definition: Mutating Functions. A function f has to be declared mutating if it assigns
a value to a state property of the type T (contract or struct) it is declared in, or if it calls a
mutating function g.

IsMutating(f, T) ,∀s ∈ Body(f) (IsAssignmentToState(s, T))∨

∃c ∈ FunctionCalls(s)
(¬IsDeclaredLocally(Receiver(c))∧
IsMutating(MatchingDecl(c), ReceiverType(c))

)
where
IsAssignmentToState(s, T) indicates whether the statement s assigns to a property of T,
IsDeclaredLocally(v) indicates whether v is declared as a local variable,
FunctionCalls(s) is the set of function calls in statement s,
Receiver(c) is the receiver of the function call c,
ReceiverType(c) is the type of the receiver of the function call c,
MatchingDecl(c) is the matching declaration for a function call c.
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Property: Safe Arithmetics. Let Z/2256 be the set of integers between 0 and 2256 − 1.
Let +, −, ∗, / denote the arithmetic operators of Flint, +,−, ∗, / refer to the mathematical
operators, and  denotes the evaluation of an expression. If a computation does not follow
the following rules (e.g., the evaluation causes an overflow), an exception is thrown and the
Ethereum transaction is aborted with an exception.

∀a, b, c ∈ Z/2256 a+b c =⇒ a+ b = c

∀a, b, c ∈ Z/2256 a−b c =⇒ a− b = c

∀a, b, c ∈ Z/2256 a∗b c =⇒ a ∗ b = c

∀a, b, c ∈ Z/2256 a/b c =⇒ a/b = c

Property: State Property Initialisation. Each state property v in a type T (contract
or struct) must be initialised before the initialiser returns.

IsInitialised(T) , ∀v ∈ StateProperties(T) . IsInitialised(v)

where IsInitialised(v) indicates whether the property v has been assigned a default value
when declared, or has been assigned in the initialiser of the type T .

Definition: No Unauthorised Internal Calls. In a function f, the caller capabilities for
performing each function call c must be compatible with the caller capabilities of f.

∀s ∈ Body(f). ∀c ∈ ContractFunctionCalls(s).
Compatible(CallerCaps(f), CallerCaps(MatchingDecl(c)))

where
CallerCaps(f) returns the caller capabilities required to call a function f,
MatchingDecl(c) returns the matching declaration for a function call c,
Compatible(s, s’) is described in section 4.3.

Properties: Asset Types Operations

No Unprivileged Creation. It is not possible to create an asset of non-zero quantity
without transferring it from another asset.

No Unprivileged Destruction. It is not possible to decrease the quantity of an asset
without transferring it to another asset.

Safe Internal Transfers. Transferring a quantity of an asset from one variable to another
within the same smart contract does not change the smart contract’s total quantity of the
asset.

Safe External Transfers. Transferring a quantity q of an asset A from a smart contract S
to an external Ethereum address decreases S’s representation of the total quantity of A by
q. Sending a quantity q′ of an asset A to S increases S’s representation of the total quantity
of A by q′.
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3.5.2 Towards Formal Verification

We designed Flint’s features with verifiability in mind. The restricted set of operations (such
as forbidding infinite loops) helps the translation of Flint programs to proof assistant pro-
grams such as Coq [44] programs, allowing the formal verification of user-defined properties
about the smart contract. Furthermore, automated analysers could encode Flint’s semantics
to provide meaningful information about the safety of the smart contract.

3.5.3 Other Blockchains

The issues that Flint attempts to solve are not specific to the Ethereum platform. In principle,
Flint’s features are applicable to future blockchain based decentralised platforms. Restricting
unauthorised calls is a problem inherent to any web service, and we believe exchange of assets
is predominant in this domain. While immutability of a smart contract’s code might not be
required in other platforms, we believe separating state mutating code enhances reasoning in
general. We have decoupled the Flint compiler’s frontend from the EVM backend, allowing
us to write new code generation libraries for other bytecode specifications in the future.

46



Chapter 4

Caller Capabilities

In this chapter, we present the design and implementation of Flint’s caller capabilities, which
protect functions from unauthorised accesses. When external users call a function in a Flint
contract, they must have the correct caller capability. Otherwise, the call is rejected. Internal
functions calls within a Flint contract are only checked at compile time, allowing great runtime
performance.

4.1 Motivation

Both smart contracts and web services present a set of functions which can be called by users,
i.e., the API. Controlling access to API functions is important. Unintentionally allowing an
unauthorised third-party to call a privileged function can be catastrophic, such as in the
first Parity attack (see subsection 2.3.2). Solidity uses function modifiers to insert dynamic
checks in functions, which can for instance abort unauthorised calls. However, it is easy to
forget to specify these checks, as the language does not require programmers to write them.
Having a language construct which protects functions from unauthorised calls could require
programmers to systematically think about which parties should be able to call the functions
they are about to define.

4.2 Design

Flint’s approach to controlling access to functions is performed through a feature we call
caller capabilities. A caller capability grants an Ethereum user the permission to perform
certain operations in a smart contract. When defining functions, smart contract developers
need to specify explicitly which caller capability is required to call each function. Functions
protected by the special caller capability any can be called by any user. An example is shown
in Listing 4.1. Lines 1 and 5 each declare function blocks each protected by a caller capability
group, namely (any) and (manager). Ethereum users which hold any of the addresses in the
caller capability group can call the functions in the block. These semantics imply a caller
capability group forms a union of its members.

1 Bank :: (any) {
2 // The functions in this block can be called by any user.
3 }
4
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5 Bank :: (manager) {
6 // The functions in the block can be called by the Ethereum users which hold
7 // the address stored in the ’manager’ state property.
8 }

Listing 4.1: Flint Caller Capabilities

A caller capability represents a single or an array of Ethereum addresses. In the case of arrays,
the caller needs to hold any of the addresses in the array in order to perform a function call.
Addresses backing caller capabilities can be changed at runtime. This allows, for example,
to change the address of an admin caller capability, or add an address to a customers array
caller capability.

The Ethereum address of the caller of a function is unforgeable. It is not possible to im-
personate another user, as a consequence of Ethereum’s mechanism which generates public
addresses from private keys. Transactions are signed using a private key, and determine the
public key of the caller. Stealing a caller capability would hence require stealing a private
key. The recommended way for Ethereum users to transfer their ability to call functions is to
either change the backing address of the caller capability they have (the smart contract must
have a function which allows this), or to securely send their private key to the new owner,
outside of the Ethereum platform.

In addition to checking at runtime whether the caller of a function is in possession of a
capability allowing them to call this function, the compiler finds invalid internal function
calls statically. This prevents the programmer from, for example, calling a privileged function
from a function which can be called by any user.

In the example below, we implement a smart contract a parent would deploy to set up a
college fund for their child. The parent can deposit Ether gradually. Once the child is ready
to start college, the parent calls allowWithdrawal, which enables the child to withdraw the
Ether into their Ethereum account. It is important for the functions in this smart contract
to be protected from unauthorised accesses.

1. Contract state.

1 contract ChildCollegeFund {
2 var parent: Address
3 var child: Address
4 var canWithdraw: Bool = false
5 var tuitionFee: Int
6
7 var contents: Wei = Wei(0)
8 }

2. Anyone can initialise the contract. The contract can be deployed by anyone, and
is initialised during contract deployment. The Ethereum user which deploys the contract is
considered to be the parent.

9 ChildCollegeFund :: caller <- (any) {
10 // Anyone can initialise this contract. The caller’s address is bound to
11 // the ’caller’ variable on the line above.
12 public init(child: Address, tuitionFee: Int) {
13 self.parent = caller
14 self.child = child
15 self.tuitionFee = tuitionFee
16 }
17 }
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3. Functions that only the parent can call. The parent can deposit money, allow the
child to withdraw the funds, get the number of Ether which has been deposited, and how
much more is required to meet the tuition fee.

18 ChildCollegeFund :: (parent) {
19 // Only the parent can call the functions in this block.
20
21 @payable
22 public mutating func deposit(implicit value: Wei) {
23 contents.transfer(&value)
24 }
25
26 mutating public func allowWithdrawal() {
27 self.canWithdraw = true
28 }
29
30 public func getContents() -> Int {
31 return contents.getRawValue()
32 }
33 invalidWithdraw
34 public func getDistanceFromGoal() -> Int {
35 // The caller of this function is statically known to be ’parent’.
36 // Therefore, the calls to ’getTuitionFee’ and ’getContents’ can be performed.
37 return getTuitionFee() - getContents() // OK.
38 }
39 }

4. Functions the parent and the child can call. The parent and the child can see the
total tuition fee. The call to withdraw is invalid, as it cannot be called by the parent. When
calling invalidWithdraw, it is not statically known whether the caller is the child (it could be
the parent).

40 ChildCollegeFund :: (parent, child) {
41 // The parent or the child can call these functions.
42
43 public func getTuitionFee() -> Int {
44 return tuitionFee
45 }
46
47 mutating public func invalidWithdraw() {
48 // The call to ’withdraw’ is invalid, as it requires the caller to have the
49 // ’child’ capability statically. At runtime, we only know the caller has
50 // one of the capabilities ’parent’ or ’child’.
51 withdraw() // Invalid.
52 }
53 }

5. Functions the child can call. The child can withdraw the funds after the parent’s
approval. The child cannot know how much more funds are required to meet the tuition fee
goal.

54 ChildCollegeFund :: (child) {
55 // The child can call these functions.
56
57 mutating public func withdraw() {
58 // We have not implemented the unary not (!) operator yet.
59 require(canWithdraw == false)
60 send(child, &contents)
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61 }
62
63 public func getDistanceFromGoal2() -> Int {
64 // The call to ’getContents’ is invalid, as it requires the caller
65 // to have the caller capability ’parent’. The caller is statically known
66 // to only have the capability ’child’.
67 return getTuitionFee() - getContents() // Invalid.
68 }
69 }

The compiler output for this smart contract is shown in 4.2.

4.3 Safety

We introduce the notion of compatibility between caller capabilities.

Definition: Compatibility of Caller Capabilities. A function f can call a function g
if their caller capabilities are compatible. That is, either g has the special capability any, or
any of the caller capabilities required to call f should be sufficient to call g.

Compatible(CallerCaps, CalleeCaps) ,
(any ∈ CalleeCaps) ∨ (∀c ∈ CallerCaps. c ∈ CalleeCaps)

Caller capabilities ensure no unauthorised internal function calls are performed. We formalise
this property.

Definition: No Unauthorised Internal Calls. In a function f, the caller capabilities for
performing each function call c must be compatible with the caller capabilities of f.

∀s ∈ Body(f). ∀c ∈ ContractFunctionCalls(s).
Compatible(CallerCaps(f), CallerCaps(MatchingDecl(c)))

where
CallerCaps(f) returns the caller capabilities required to call a function f,
MatchingDecl(c) returns the matching declaration for a function call c,
Compatible(s, s’) is described in section 4.3.

4.4 Implementation

Caller capability checks are performed at compile-time for internal function calls (when a
function calls another function defined in the same contract), and thus allows for finding
bugs early in the development cycle. This also allows for better runtime performance by
omitting runtime checks, as shown in our evaluation in chapter 8.

The caller capability of foreign contracts and Ethereum users calling into Flint programs
are verified at runtime, hence protecting from unauthorised attempts to call protected func-
tions.
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4.4.1 Static Checking

During parsing, each function declaration and their associated caller capabilities are recorded
in an Environment struct. The semantic analyser then verifies the validity of each function
call with respect to its caller capabilities.

If a function call can be matched to a declaration but the caller capabilities required to
perform the call are not sufficient, the compiler provides an additional note to help the
programmer fix the issue.

Error in ChildCollegeFund.flint:
Function ’withdraw’ cannot be called using the caller capabilities ’parent, child’ at line

48, column 5:
withdraw()
^^^^^^^^^^

Note in ChildCollegeFund.flint:
Perhaps you meant this function, which requires the caller capability ’child’ at line 53,

column 19:
mutating public func withdraw() {

^^^^^^^^^^^^^^^
Error in ChildCollegeFund.flint:
Function ’getContents’ cannot be called using the caller capability ’child’ at line 62,

column 30:
return getTuitionFee() - getContents()

^^^^^^^^^^^^^
Note in ChildCollegeFund.flint:
Perhaps you meant this function, which requires the caller capability ’parent’ at line

28, column 10:
public func getContents() -> Int {

^^^^^^^^^^^^^^^^^^^^^^^^^
Failed to compile.

Listing 4.2: Compiler Ouptut for Invalid Caller Capabilities, for the Code in Listing 4.2.

4.4.2 Dynamic Checking

To prevent external Ethereum users and smart contracts from performing unauthorised func-
tion calls, runtime checks are inserted in the function selector portion of the code, immediately
before running the function’s body. If the caller’s address is not in the set of caller capabili-
ties required to call the function, an exception is thrown and the call is aborted (the REVERT
opcode is executed).

Caller capability checks are omitted for calls to functions declared in the same contract. This
provides better runtime performance without compromising safety, as the checks for internal
calls are verified at compile-time.

4.5 Remarks and Related Work

4.5.1 Solidity Modifiers Are More Fine-Grained

Solidity modifiers allow checking for any type of assertion before the body of a function
is entered. However, Solidity does not enforce programmers to write them. As we believe
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protecting privileged functions in smart contracts is a basic requirement, Flint requires1

programmers to do so using caller capabilities. Our implementation is also more efficient for
internal calls, as shown in section G.1. Flint users can use the assert function to perform
other types of checks at runtime.

4.5.2 Overloading on Capability Groups

A natural extension to the caller capabilities system could be to allow overloading of func-
tions using caller capabilities. We provide an example in Listing 4.3. We would call the
withdraw function from line 8 if the caller has the manager capability, and withdraw from line
2 otherwise.

1 Bank :: (any) {
2 mutating func withdraw() {
3 // Body omitted.
4 }
5 }
6
7 Bank :: (manager) {
8 mutating func withdraw() {
9 // Body omitted.
10 }
11 }

Listing 4.3: Overloading Using Capabilities

We believe this presents confusing semantics. The caller capability groups can be overlapping
(such as in the above example) and the overload chosen runtime might not be the one the
user expected.

4.5.3 The Term “Capability”

Flint’s caller capabilities system draws similarities to role-based access control systems2 [47],
wherein operations can only be performed if the user has been assigned a given role, rather
than a specific set of users. A caller capability then encapsulates such a role, as the user
which has been assigned the role can change after contract initialisation.

1A programmer could decide, however, to write all functions in an any block. This is discussed in sec-
tion 8.2.3.

2After the Flint project was open-sourced, the term “caller capabilities” has been criticised to not be
capabilities in the traditional sense of the term. Mark Miller et al. [45] describe four security models which
make the distinction between Access Control Lists (ACLs) and different types of capabilities. In particular,
it describes “object capabilities” systems as systems in which authority over an object can be transferred.
The original definition of a capability by Jack Dennis et al. [46] regard a capability as an unforgeable token

(a number) which when possessed by a user, allows access to a resource. In Flint, a capability is linked with
an Ethereum address, which can be regarded as an unforgeable token, as explained in 4.2. An individual has
the authority to call a function if it possesses the appropriate private key, and transferring authority is done
by simply sharing the private key.

?? is a proposal which was written on Flint’s GitHub repository to motivate the change of the term, and
suggests the replacement name “caller identities.”
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4.5.4 Caller Capabilities as Types

Some programming languages, such as Pony, reference capabilities associated with object
references are part of the object’s type. Flint’s caller capabilities are not encoded in the
functions’ type. We could encode caller capabilities in the type system by making each
function take the capability as an argument. A function of type Int -> Int that is only
callable by the manager address could have type manager -> Int -> Int. Then, the function
would not be callable if caller does not have the manager address. To encode caller capability
groups (the caller must have one of the addresses in the group), we could use a union type:
(manager | admin) -> Int -> Int, where (manager | admin) is an anonymous union type.
This mechanism would however require a dependently-typed system, as caller capabilities are
state properties. Implementing a dependently-typed system which would have proved to be
significantly more difficult. If Flint’s type system were dependently typed to support other
language features, we would have encoded caller capabilities as such.
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Currency and Assets

In this chapter, we look at how Flint smart contracts can handle currency and other assets
in a type safe manner. We introduce the concept of Assets. Assets in Flint describe values
which cannot be accidentally created, duplicated, or destroyed. They can only be atomically
transferred to other variables. These properties help ensure smart contracts are always in a
consistent state. The most prevalent Asset in smart contracts is Ether. We implement the
Asset operations for the Wei type, representing the smallest denomination of Ether. In the
future, we plan on allowing the definition of user-defined Assets, which would inherit our
Asset properties (see section 5.5.

5.1 Motivations

Numerous attacks targeting smart contracts, such as ones relating to reentrancy calls (see
TheDAO, subsection 2.3.1), allow hackers to steal a contract’s Ether. These happen because
smart contracts encode Ether values as integers, making it is easy to make mistakes when
performing Ether transfers between variables, or to forget to record Ether arriving or leaving
the smart contract.

The Bank contract in Listing 5.1 records the balances of its customers, and implicitly assumes
that the sum of all the balances reflects exactly the total amount of Wei the bank received.
When supporting withdraw and deposit operations, the programmer needs to manually up-
date the balances dictionary to reflect the changes.

In the following example, if either of the lines a or b were omitted, the contract’s state would
not be accurately representing the total amount it has. Omitting line b is more dangerous:
the contract would be sending Wei without recording it in the state. A customer could
withdraw the same amount until the bank’s balance is completely exhausted.

1 contract Bank {
2 var balances: [Address: Wei]
3 }
4
5 Bank :: account <- (balances.keys) {
6 @payable
7 mutating func deposit(implicit value: inout Wei) {
8 balances[account] += value // a
9 }
10
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11 mutating func withdraw() {
12 send(account, balances[account])
13 balances[account] = 0 // b
14 }
15 }

Inconsistencies between the smart contract’s recorded balance and its actual Ether balance
can also occur with reentrant calls. In TheDAO attack (see subsection 2.3.1), an attacker
was able to retrieve more Ether than they had sent to the contract, due to the contract not
updating its state before performing subsequent transfers.

5.2 Properties

In order to prevent state inconsistency issues such as the ones highlighted above, we introduce
the concept of Assets. We encode currency (such as Ether) as Assets, but also other items
of value, such as theatre tickets. Assets are meant to keep the state of a smart contract
consistent. We formalise by defining the following properties.

Properties: Asset Types Operations

No Unprivileged Creation. It is not possible to create an asset of non-zero quantity
without transferring it from another asset.

No Unprivileged Destruction. It is not possible to decrease the quantity of an asset
without transferring it to another asset.

Safe Internal Transfers. Transferring a quantity of an asset from one variable to another
within the same smart contract does not change the smart contract’s total quantity of the
asset.

Safe External Transfers. Transferring a quantity q of an asset A from a smart contract S
to an external Ethereum address decreases S’s representation of the total quantity of A by
q. Sending a quantity q′ of an asset A to S increases S’s representation of the total quantity
of A by q′.

Wei and Ether are Assets in Flint. The sum of the state properties of type Wei or Ether
should always be equal to the actual value of the contract, as seen by miners. Assets can also
be used to create sub-currencies, or coins, which can be minted during contract initialisation
using a privileged operation.

5.3 Design and Implementation

In Flint, developers can perform asset transfers safely. The standard library implements the
Wei type, which provides safe transfer operations.

Listing 5.1 shows how we implement the Wei type in the standard library.

1 struct Wei {
2 // The Wei amount as an integer.
3 var rawValue: Int
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4
5 // Creates Wei directly from an integer. This is a privileged operation.
6 init(unsafeRawValue: Int) {
7 self.rawValue = unsafeRawValue
8 }
9
10 // Creates Wei by transferring a specific quantity of another Wei.
11 // Causes a fatalError() if the quantity of source is smaller than amount.
12 init(source: inout Wei, amount: Int) {
13 if source.getRawValue() < amount { fatalError() }
14 source.rawValue -= amount
15 rawValue = amount
16 }
17
18 // Creates Wei by transferring the entire quantity of another Wei.
19 init(source: inout Wei) {
20 init(&source, source.getRawValue())
21 }
22
23 // Transfers a specific quantity of another Wei into the receiver.
24 // Causes a fatalError() if the quantity of source is smaller than amount.
25 mutating func transfer(source: inout Wei, amount: Int) {
26 if source.getRawValue() < amount { fatalError() }
27 source.rawValue -= amount
28 rawValue += amount
29 }
30
31 // Transfers the entire quantity of another Wei into the receiver.
32 mutating func transfer(source: inout Wei) {
33 transfer(&source, source.getRawValue())
34 }
35
36 // Returns the quantity of Wei, as an integer.
37 func getRawValue() -> Int {
38 return rawValue
39 }
40 }

Listing 5.1: Wei Type Declaration

We also aim to support user-defined assets, which would inherent safe transfer operations
from the standard library (see section 5.5).

5.3.1 Properties

The properties highlighted in the previous section hold intuitively:

No Unprivileged Creation. The only way to create an Asset is through the init(unsafeRawValue:)
initialiser, which is considered to be a privileged operation. An @privileged function annota-
tion is discussed in 5.6.2. An Int cannot be directly assigned to a variable of type Wei.

No Unprivileged Destruction. There is no function which allows explicitly decreasing
the number of Wei using an integer. When an Asset variable goes out of scope, its contents
are destroyed. This is considered to be a privileged operation, and Flint will emit a compiler
warning when the contents of an Asset going out of scope are not transferred.
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Safe Internal Transfers. The init(source:amount:) and init(source:) initialisers remove
an amount a from a variable and adds the same amount a to another. The total amount of
the Asset thus remains unchanged.

Safe External Transfers. For sending assets, we use the send function, which takes a
Wei parameter rather than an integer value, and clears its contents when transferring. This
prevents attacks such as TheDAO. Smart contracts receive Assets as parameters to functions.
From No Unprivileged Destruction, it follows the parameter’s value must be written to
state before the function returns.

5.4 Example use of Assets

The illustrate how Flint’s Asset operations can be used, we define a Bank smart contracts
which makes use of the Wei asset.

1. Declaring the contract. The Bank contract will emulate a bank. Customers can send
Ether to the bank, and retrieve it at a later stage. We also allow the Bank to accept donations,
in order to showcase simple Asset transfers. We declare the state properties of the contract.
The balances dictionary holds the balances of each customer, and the accounts array stores
the addresses of each customer. totalDonations represents the total amount of Ether which
was donated to the bank.

1 contract Bank {
2 var manager: Address
3 var balances: [Address: Wei] = [:]
4 var totalDonations: Wei = Wei(0)
5 }

2. Anyone can donate. Customers can donate Ether by calling donate. The Wei value
attached to the Ethereum transaction is transferred to the state of the contract. The function
donate receives an Ether amount from Ethereum, which is bound to the implicit parameter
value. On line 8, the transfer function is called on totalDonations, which has type Wei. It
takes as a parameter a reference to value, and transfers its contents to totalDonations in a
single atomic operation. After line 8, totalDonations has been increased, and value has 0
Wei.

6 // The functions in this block can be called by any user.
7 Bank :: account <- (any) {
8 // Omitting the contract initialiser.
9
10 @payable
11 public mutating func donate(implicit value: Wei) {
12 // This will transfer the funds into totalDonations.
13 totalDonations.transfer(&value)
14 }
15 }

3. Customer operations. Customers get the balance of their account by calling get-
Balance, which returns the value as an integer. Internal transfers between accounts can be
performed using transfer. The balances of the originator and the destination are updated
atomically. The operation crash if balances[account] doesn’t have enough Wei. The with-
draw operation sends Wei back to the Ethereum account of the customer. The required
amount is first transferred from their bank account to the local variable w, then sent to the
Ethereum address.
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16 Bank :: account <- (balances.keys) {
17 public func getBalance() -> Int {
18 return balances[account].getRawValue()
19 }
20
21 public mutating func transfer(amount: Int, destination: Address) {
22 balances[destination].transfer(&balances[account], amount)
23 }
24
25 @payable
26 public mutating func deposit(implicit value: Wei) {
27 balances[account].transfer(&value)
28 }
29
30 public mutating func withdraw(amount: Int) {
31 // The operation crashes if the user’s bank account has less than amount Wei.
32 let w: Wei = Wei(&balances[account], amount)
33
34 // Send the amount back to the Ethereum user.
35 send(account, &w)
36 }
37 }

The full example is available at https://github.com/franklinsch/flint/blob/master/examples/
valid/bank.flint.

5.4.1 Distributing Money Among Peers

We provide a more complex example use of Assets, which we cannot compile yet using the
latest version of the Flint compiler. This smart contracts splits Ether among peers according
to a weights mapping. We also split a bonus equally.

1 contract Wallet {
2 var balance: Wei
3 var bonus: Wei
4
5 var beneficiaries: [Address]
6 var weights: [Address: Int]
7 }
8
9 Wallet :: (owner) {
10 mutating func distribute(amount: Int) {
11 let beneficiaryBonus = bonus.getRawValue() / beneficiaries.count
12 for i in (0..<beneficiaries.count) {
13 var allocation = Wei(&balance, amount * weights[i])
14 allocation.transfer(&bonus, beneficiaryBonus)
15 send(beneficiaries[i], &allocation)
16 }
17 }
18 }
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5.5 Generalised Assets

We also aim to implementing an Asset trait (similar to a typeclass with default implementa-
tions for some methods), to allow developers to define their own assets. This would be useful
for representing sub-currencies as Assets, which would enable the use of the same safe transfer
operations. This feature has not been implemented as we do not support traits yet.

5.5.1 Trait Definition

In Listing 5.5.1, we implement the Asset trait. A Flint trait is similar to a Rust trait1, a pro-
tocol in Swift, a typeclass in Haskell, or an interface in Java. A trait cannot be instantiated,
and defines which functions the structs which conform to it must implement. Developers can
also specify default implementations of functions for traits, and any conforming class inherits
from the functionality. As we have not implemented traits yet, generalised assets are not yet
supported.

1 trait Asset {
2 // Create the asset by transferring a given amount of asset’s contents.
3 init(source: inout Self, amount: Int)
4
5 // Unsafely create the Asset using the given raw value.
6 init(unsafeValue: Int)
7
8 // Return the raw value held by the receiver.
9 func getRawValue() -> Int
10
11 // Transfer a given amount from source into the receiver.
12 mutating func transfer(source: inout Self, amount: Int)
13 }

5.5.2 Default Implementation of Functions

We provide default implementations, which any type conforming to Asset inherits.

1 extension Asset {
2 // Create the asset by transferring another asset’s contents.
3 init(from other: inout Self) {
4 self.init(from: &other, amount: other.getRawValue())
5 }
6
7 // Transfer the value held by another Asset of the same concrete type.
8 mutating func transfer(source: inout Self) {
9 transfer(from: &source, amount: source.getRawValue())
10 }
11
12 // Transfer a subset of another Asset of the same concrete type.
13 mutating func transfer(source: inout Self, amount: Int) {
14 if amount > source.getRawValue() { fatalError() }
15
16 source.rawValue -= amount
17 rawValue += amount
18 }

1Traits in Rust: https://doc.rust-lang.org/stable/rust-by-example/trait.html
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19 }

5.5.3 Implementing a Plane Ticket Asset

We implement an alternate version of the FlightManager from subsection 3.1.1, which sells
tickets without assigning seats immediately. We first declare a new PlaneTickets asset,
backed by an integer value.

1 struct PlaneTickets: Asset {
2 var rawValue: Int
3
4 init(unsafeValue: Int) {
5 rawValue = unsafeValue
6 }
7
8 init(from other: inout Asset, amount: Int) {
9 rawValue = 0
10 transfer(from: &other, amount: amount)
11 }
12
13 func getRawValue() -> Int {
14 return rawValue
15 }
16 }

Listing 5.2: Implementing Wei Using the Asset Trait

We then update our FlightManager declaration as follows. We do not use unsafe operations,
except for initialising the initial number of tickets.

1 contract FlightManager {
2 // State properties as before.
3
4 // The plane has 140 tickets.
5 var tickets = PlaneTickets(140)
6 var ticketAllocations: [Address: PlaneTickets] = [:]
7 }
8
9 FlightManager :: caller <- (any) {
10 // Initialiser and ’allocateSeat’ as before.
11
12 @payable
13 mutating public func buy(implicit value: Wei) {
14 assert(value.getValue == ticketPrice)
15 amountPaid[caller].transfer(&value)
16
17 // Transfer one ticket. An exception is thrown if there are no more available tickets.
18 ticketAllocations[caller].transfer(&tickets, 1)
19 }
20 }
21
22 FlightManager :: passenger <- (ticketAllocations.keys) {
23 // As before.
24 }
25
26 FlightManager :: (admin, ticketAllocations.keys) {
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27 mutating func refund(passenger: Address) {
28 let refund = Wei(&amountPaid[passenger])
29 allocations[passenger] = nil
30
31 // Transfer the ticket back to the ticket pool.
32 tickets.transfer(&ticketAllocations[passenger])
33
34 send(passenger, &refund)
35 }
36 }

5.5.4 Compiler Warnings for Misusing Assets

To implement No Unprivileged Destruction, each local variable and parameter of an
Asset type should be transferred to another local variable or state property. This implies
that Assets are never implicitly destroyed when a function exists—they are transferred to
state. Assets transferred from state to local variables need to eventually be transferred back.
An Asset received through a parameter (including the implicit value of an @payable function)
must eventually be recorded to state. We plan to implement a compiler warning to alert the
programmer when this rule is not respected. In subsection 5.6.1, we discuss why we chose to
produce a warning rather than an error.

1 @payable
2 public mutating func deposit1(implicit value: Wei) {
3 // Warning: local variable ’value’ has not been transferred.
4 }
5
6 @payable
7 public mutating func deposit2(implicit value: Wei) {
8 let w: Wei = Wei(&value) // OK
9 // Warning: local variable ’w’ has not been transferred.
10 }
11
12 @payable
13 public mutating func deposit(implicit value: Wei) {
14 balances[account].transfer(&value) // OK
15 }

Listing 5.3: Errors for Not Using Linear Values

5.6 Remarks

5.6.1 Linear Types

Substructural type systems [48], in particular linear type systems, aid the implementation
of Asset types. Linear type systems are generally used to determine when heap-allocated
objects can be deallocated. Specifically, linear objects need to be used exactly once in the
scope where they are defined. In Flint, we use a similar approach to check if all local variables
of an Asset type are transferred exactly once to ensure receiving an Asset always results in
transferring it to state.
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In 5.5.4, we discussed a linear type approach to producing warnings when Asset local variables
are implicitly destroyed when exiting their declaration scope. Due to aliasing difficulties and
partial transfers, we cannot always determine if an Asset has been entirely transferred.

Listing 5.4 highlights two cases where we cannot guarantee that an Asset has been transferred
entirely exactly once. In transfer, if indexA and indexB are equal (which cannot be checked at
compile-time, the second transfer operation should be prohibited as the value of arr[indexB]
would have been transferred already. In deposit, we cannot know at compile-time whether
all of the contents of value are transferred when we transfer 10 Wei.

Due to our inability to statically check whether all local variables are used exactly once, we
do not produce errors, but warnings which can be ignored. Producing errors would produce
an inconsistent experience for the developer, who would expect all instances of unsafe code
would be rejected.

1 public mutating func transfer(arr: inout [Wei], indexA: Int, indexB: Int) {
2 wallet.transfer(&arr[indexA])
3 wallet.transfer(&arr[indexB]) // Does indexA == indexB?
4 }
5
6 @payable
7 public mutating func deposit(implicit value: Wei) {
8 balances[account].transfer(&value, 10)
9 // Has ’value’ been transferred completely?
10 }

Listing 5.4: Linear Values Aliasing

We described our approach for requiring the transfer of local variables, but not for state
properties. State properties do not have to be transferred in each scope. The compiler could,
however, check they are used at most once in each scope. This would be an implementation
of affine type theory.

5.6.2 Protecting Privileged Operations

It is still possible to write unsafe code using Flint’s Asset types, through the use of the
init(unsafeValue:) initialiser, which allows any currency to be created from an integer.
The use of unsafe operations can easily be caught by the semantic analyser, and reported to
users of the smart contract. We cannot disallow developers the use of this initialiser, as there
are valid uses cases for it, such as the minting of a currency.

In the future, however, we’d like to add an @privileged function annotation. The compiler
would require the annotation to be present if the function uses privileged operations. A user-
defined function initialising a Wei directly from an integer value would need to be annotated
@privileged. Similarly, a function which implicitly destroys an Asset (by not transferring
the contents of a local Asset variable to a state property), could be annotated @privileged
to silence warnings.

The Wei declaration would be updated to use the @privileged keyword, as shown in List-
ing 5.5. We also show how implicit Asset destruction could be allowed using using the
keyword.

1 struct Wei {
2 var rawValue: Int
3
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4 @privileged
5 init(unsafeRawValue: Int) {
6 self.rawValue = unsafeRawValue
7 }
8
9 // Same declarations as before.
10 }
11
12 Fund :: (any) {
13 @privileged @payable
14 func receiveMoney(implicit value: Wei) {
15 // No warning is produced.
16 }
17 }

Listing 5.5: Implementing Wei Using the Asset Trait

5.6.3 Conversion between Assets

It is sometimes useful to convert a type of Asset into another type of Asset. For example, it
should be possible to safely perform currency conversions between Ether and a sub-currency.
In our PlaneTickets example, we could have created an initialiser which takes Wei as a
parameter, and initialises a certain number of plane tickets. We would however have needed
to unsafely create plane tickets. To sell tickets, we could have created another initialiser for
Wei, to convert a ticket’s value back to Wei. In the future, we would like to provide a better
scheme for converting between Asset types.
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Compiler and Code Generation

We implement flintc, a compiler for Flint written in about 25 000 lines of Swift [15] code, and
can be used on the Linux and macOS operating systems. The compiler’s source code is open
source and available on GitHub [24]. We choose Swift as it is a modern programming language
for writing well-designed, performant code. We were able to implement the compiler while
designing the language, using a highly extensible code architecture allowing us to quickly
implement new features and analyses (see section 6.3).

The compiler stages are illustrated in Figure 6.1 and described in this chapter. Input Flint
programs are analysed, compiled to the IULIA [43] intermediate representation, and finally
to EVM bytecode. By embedding IULIA in a Solidity file, tools built for Solidity work
with Flint. We compile IULIA code using the Solc [5] compiler1. We also describe Flint’s
Application Binary Interface (ABI) which allows interoperability with Solidity, and present
the runtime organisation of Flint programs.

We implement a full test suite to verify the validity of our compiler (see section 6.13).

6.1 Tokeniser

The tokeniser converts raw source text of a Flint input program into a sequence of tokens.
We elected to implement a tokeniser ourselves, rather than using a tokeniser library. This
allowed better flexibility in the language’s syntax, which evolved significantly since its incep-
tion.

We implement the tokeniser in Parser/Tokenizer.swift. The input text is first split into
words, and each word is matched to a token. The different types of Flint tokens are defined
in AST/Token.swift. We organise tokens into different groups: keywords (such as contract,
struct, or func), punctuation (such as {, ->, or +), function attributes (such as @payable),
literals (boolean, string, and number literals), and identifiers (such as MyContract).

Operators, such as +, &+ (overflowing plus), +=, and ||, have an associated precedence. We
adopt the precedence rules programmers expect.

When tokenising, we maintain the source location (line and column number) of each token in
the source file. This helps provide better error messages in the later compiler stages.

1When developing the compiler, solc could not compile IULIA code directly—it had to be embedded in
a Solidity file
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Flint Source File

Tokeniser 
Convert text to tokens

Parser 
Convert tokens to an AST

Semantic Analyser 
Verify validity of program

Type Checker 
Check type consistency

Optimiser 
Increase runtime performance

IULIA IR Code Generator 
Convert code to IULIA IR

IULIA Intermediate 
Representation

Embed in Solidity File 
(Temporary)

Solc Compiler 
Compile IULIA IR to bytecode

EVM Bytecode

Frontend

Backend

IULIAPreprocessor 
Prepare code for IULIA IR

Figure 6.1: Compiler Stages

6.2 Parser

The parser processes the sequence of tokens into an Abstract Syntax Tree (AST). We also
developed the parser ourselves, rather than using a third-party library, which made it easier
to update Flint’s grammar rules and have better control over what we store in each node.
Our parser uses the Flint grammar, which can be read in Appendix A. We implement a
custom recursive descent parser with variable lookahead. If the program cannot be parsed,
the compiler attempts to find the invalidly placed token and produces an error message.

In most cases, the parser only looks at the next token to determine which rule of the grammar
to match. The exception is for expressions—the location of the last token of the expression is
searched before parsing. We do this by implementing a indexOfFirstAtCurrentDepth function,
which finds the first occurrence of a token at a given syntactic depth (opening or closing a
bracket increases or decreases depth). For example, when parsing a function call argument,
we determine the location of the end of the expression by using indexOfFirstAtCurrentDepth
to find a comma or a close bracket token.

The parser also creates an Environment, which records various information about the con-
tracts and structs defined in the Flint program.

The AST’s nodes are defined in AST/AST.swift. A node’s children are stored in state prop-
erties. A child can either be a terminal (a token), or another node. In some cases, not all
properties need to be set. For instance, a FunctionDeclaration node can have its resultType
property set to nil if the function does not explicitly return a value. Nodes also have a
sourceLocation computed property1, which describes their span in the original source file.

1A computed property does not have any associated memory storage—its value is computed in terms of
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Using this mechanism, we can highlight entire nodes in error messages, rather than single
tokens.

6.3 The AST Pass Mechanism for Better Extensibility

6.3.1 AST Visitor and AST Passes

The Semantic Analyser, Type Checker, Optimiser, and IULIA Preprocessor are stages of the
compiler which all require traversing the AST.We implement a code architecture which decou-
ples AST traversal and node processing. By processing, we mean modifying a node, updating
contextual information such as the Environment, and produce errors or warnings.

The traditional visitor pattern [49] leverages dynamic method dispatch mechanisms to sep-
arate node processing logic from tree traversal logic. However, it requires for visited nodes
to invoke the visitor on their children nodes manually. In our design, nodes do not have ref-
erences to visitors. We create an architecture which uses a single AST Visitor, and multiple
AST Passes. Figure 6.2 illustrates this process. The AST Visitor is initialised with an AST
Pass, and visits each of the AST’s nodes. The AST Visitor passes a copy of the node to
appropriate process the current AST Pass. Each AST Pass implements a process function for
each type of AST node. The AST Visitor updates the tree using the (potentially modified)
nodes returned by the AST Pass, collects diagnostics, and propagates contextual information
(see subsection 6.3.2).

After visiting the children of a node, the AST Visitor visits the parent node again in a post
process step. Visiting the parent again is necessary because in some cases, some properties
can only be checked after visiting the children. For example, to know whether a function
declaration should be marked mutating, we first need to visit the children of the node to
determine if any are statements which mutate the state of the contract.

We implement four AST Passes, which we run the in the following order: Semantic Analysis
(see section 6.4), Type Checker (see section 6.5), Optimiser (see section 6.6), and IULIA
Preprocessor (not shown in figure, see section 6.7).

6.3.2 Propagating Information when Visiting

In many cases, when visiting children of an AST node, an AST Pass requires information
from the parent node. For instance, when visiting a Function Call node, we statically
check that the function call can be performed with regards to caller capabilities (see sub-
section 4.4.1). For this, the AST Pass (in this case, the Semantic Analyser) needs to know
which caller capabilities are required to call the function which contains the function call.
To propagate information down the visit tree, the AST Visitor provides a Context value1

(AST/ASTPassContext.swift) to each of the functions in the AST Passes. In the Semantic
Analyser, we create a ContractBehaviorDeclarationContext value when processing a Con-
tract Behaviour Declaration, and insert it into the Context. The AST Visitor propagates the
Context to each of the children nodes, and the value is retrieved when visiting the Function
Call node.

other properties
1In Swift, a value is like a Java object, but with value semantics (copied when assigned or passed as a

function argument).
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Figure 6.2: Visiting the AST Nodes using AST Passes, in the Specified Order

Context information is also available in the post process step, which processes parent nodes
after visiting their children. For determining whether a function declaration should be marked
mutating, the Semantic Analyser writes the mutating statements of the function’s body to
the Context when visiting the statements of the function declaration. When the function
declaration is processed again, the Semantic Analyser retrieves the list of mutating statements
from the context.

The information stored in a Context value is backed by a dictionary, and value within can be
accessed like regular properties (e.g., context.contractBehaviorDeclarationContext). Each
AST Pass can configure which values to store in the Context, without needing to modify the
Context’s original source code. In all AST Passes, the program’s Environment, which holds
information such as which functions and structs are defined in the smart contract, is always
present in the Context, and can be updated by AST Passes.

6.3.3 Code Example: Semantic Analyser for Contract Declarations

We provide an example of the AST Visitor and AST Pass mechanism in Listing 6.1. The
ASTVisitor accepts an ASTPass as a generic argument. When visiting a contract declaration,
we call the AST Pass’ process function for each of its child nodes. The process function
returns an ASTPassResult value, which holds the potentially modified ContractDeclaration
node, diagnostics, and the potentially modified Context. We use this context when processing
the child nodes of the contract declaration. When visiting the child nodes, we combine their
ASTPassResult values together with the parent’s ASTPassResult. This allows us to propagate
information to child nodes during the visit, without having to modify the original AST. The
combining operation is performed by combine, which merges diagnostics and contexts, and
returns the mutated child node, so that it can be attached to the parent node. After visiting
the child nodes, we process the Contract Declaration again. In the Semantic Analyser, the
process function makes use of the environment property of the context given by the AST
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Visitor to check whether a contract or struct of the same name has already been defined
and whether the contract has a public initialiser defined, generating an error in the negative
case.

1 // ASTVisitor.swift
2 public struct ASTVisitor<Pass: ASTPass> {
3 func visit(_ contractDeclaration: ContractDeclaration, passContext: ASTPassContext) ->

ASTPassResult<ContractDeclaration> {
4
5 // Process the Contract Declaration.
6 var processResult: ASTProcessResult<ContractDeclaration> = pass.process(

contractDeclaration: contractDeclaration, passContext: passContext)
7
8 // Process the children nodes.
9
10 processResult.element.identifier = processResult.combining(visit(processResult.element.

identifier, passContext: processResult.passContext))
11
12 processResult.passContext.contractStateDeclarationContext =

ContractStateDeclarationContext(contractIdentifier: contractDeclaration.identifier)
13
14 processResult.element.variableDeclarations = processResult.element.variableDeclarations.

map { variableDeclaration in
15 return processResult.combining(visit(variableDeclaration, passContext: processResult.

passContext))
16 }
17
18 // Reset the context.
19 processResult.passContext.contractStateDeclarationContext = nil
20
21 // Process the Contract Declaration again, after visiting the children.
22 let postProcessResult = pass.postProcess(contractDeclaration: processResult.element,

passContext: processResult.passContext)
23 return ASTPassResult(element: postProcessResult.element, diagnostics: processResult.

diagnostics + postProcessResult.diagnostics, passContext: postProcessResult.
passContext)

24 }
25
26 // Other visit functions.
27 }
28
29 // SemanticAnalyzer.swift
30 public struct SemanticAnalyzer: ASTPass {
31 public func process(contractDeclaration: ContractDeclaration, passContext: ASTPassContext)

-> ASTPassResult<ContractDeclaration> {
32 var diagnostics = [Diagnostic]()
33 let environment = passContext.environment!
34
35 // Check whether a contract or struct with the same identifier.
36 if let conflict = environment.conflictingTypeDeclaration(for: contractDeclaration.

identifier) {
37 diagnostics.append(.invalidRedeclaration(contractDeclaration.identifier, originalSource

: conflict))
38 }
39
40 // Check whether the contract has a public initializer defined.
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41 if environment.publicInitializer(forContract: contractDeclaration.identifier.name) == nil
{

42 diagnostics.append(.contractDoesNotHaveAPublicInitializer(contractIdentifier:
contractDeclaration.identifier))

43 }
44 return ASTPassResult(element: contractDeclaration, diagnostics: diagnostics, passContext:

passContext)
45 }
46
47 public func postProcess(contractDeclaration: ContractDeclaration, passContext:

ASTPassContext) -> ASTPassResult<ContractDeclaration> {
48 return ASTPassResult(element: contractDeclaration, diagnostics: [], passContext:

passContext)
49 }
50
51 // Other process functions.
52 }

Listing 6.1: ASTVisitor and ASTPass Code Example

6.4 Semantic Analysis

The Semantic Analysis phase is an AST Pass which verifies the correctness of the input
program. This includes performs the static checks for caller capabilities, checking whether
functions are annotated mutating when required, verifying whether there are uses of undefined
variables, etc.

The errors and warnings (diagnostics) flintc produces in the semantic analysis phase are
highlighted below. When displaying diagnostics, we display the message and print the code
from the input program which caused the issue, highlighting the relevant portion of the
code. Some diagnostics also include additional notes which can help find bugs. Examples of
compiler diagnostics are shown in Listing 3.3, Listing 3.5, and Listing 4.2.

Caller Capabilities

Use of undeclared caller capability.
Caller capability ’admin’ is undefined in ’Bank’, or has incompatible type.

No matching function for function call.
Function ’setManager’ is not in scope or cannot be called using caller capabil-
ity ’(any)’. Note: Perhaps you meant this function, which requires caller ca-
pability ’(manager)’.

Mutation

Mutating statement in nonmutating function.
Use of mutating statement in a nonmutating function.

No mutating statements in mutating function (Warning).
Function does not have to be declared mutating: none of its statements are mu-
tating.
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Reassignment to constant.
Cannot reassign to value: ’manager’ is a let-constant. Note: ’manager’ is de-
clared on line 18, column 12.

Initialisation

State property is not assigned a value.
State property ’manager’ needs to be assigned a value, as no initialiser was de-
clared.

Return from initialiser without initialising all properties.
Return from initialiser without initialising all properties. Note: ’manager’
is uninitialised.

Contract does not have a public initialiser.
Contract ’Bank’ needs a public initialiser accessible using caller capability ’any’.

Contract has multiple public initialisers.
A public initialiser has already been defined. Note: A public initialiser is
defined on line 5, column 6.

Public contract initialiser is not accessible using caller capability any.
Public contract initialiser should be callable using caller capability ’any’.

Invalid Declarations

Invalid redeclaration of an identifier.
Invalid redeclaration of ’setManager’. Note: Previous declaration on line 12,
column 4.

Use of invalid character. The $ character is reserved for use in the standard library.
Use of invalid character ’$’ in ’my$Func’.

Contract Behaviour Declaration has no matching Contract Declaration.
Contract behaviour declaration for ’Bank’ has no associated contract declaration.

Invalid contract behaviour declaration.
Contract behaviour declaration for Bank has no associated contract declaration.

Invalid @payable function.
receive is declared @payable but doesn’t have an implicit parameter of a currency
type.

Ambiguous @payable value parameter.
Ambiguous implicit payable value parameter. Only one parameter can be declared
’implicit’ with a currency type.

Public function has a parameter of dynamic type, such as struct, array, or dictionary.
Function ’isSeatFree’ cannot have dynamic parameters. Note: ’seat’ cannot be
used as a parameter.

Use of undeclared identifier.
Use of undeclared identifier ’manager’.
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Missing return in non-void function.
Missing return in function expected to return ’Int’.

Code after return (Warning).
Code after return will never be executed.

6.5 Type Checker

The type checker ensures the input program is type correct. As we do not support type
inference yet, and do not plan to support subtyping, the type checker has a straightforward
implementation. The diagnostics which this AST Pass produces are listed below.

Incompatible return type.
Cannot convert expression of type ’Int’ to expected return type ’Address’.

Incompatible assignment.
Incompatible assignment between values of type Int and Wei.

Incompatible argument type.
Cannot convert expression of type Int to expected argument type Wei

6.6 Optimiser

This AST Pass currently does nothing. We plan to implement optimisations, such as constant
folding (pre-computing operations involving number literals), peephole optimisations (replac-
ing multiple instructions by a single one), and avoiding writing the value 0 to uninitialised
memory or storage (all entries memory and storage are 0 by default).

6.7 Code Generation and Runtime

Flint targets the IULIA [43] intermediate representation (IR), developed by the engineers
behind Solidity, who created IULIA as a future IR for Solidity. IULIA code can also be
embedded within a Solidity function, and is used by developers who want more fine-grained
control over the bytecode execution.

6.7.1 IULIA Preprocessor

Before the code generation phase, which we describe in subsection 6.7.2, we apply a prepro-
cessing step which prepares the AST for code generation. This AST Pass mangles function
names and passes the receiver of function calls as their first argument (see subsection 6.8.2),
introduces an isMem parameter for each parameter which can be passed by value or by ref-
erence (see subsection 6.8.1), and default property assignments to the beginning of the con-
tract’s initialiser (see subsection 6.11.3).
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6.7.2 Generating Code

The code generation logic is available in IRGen/. We implement a code generating struct per
AST Node, which takes an AST node as a parameter, and returns its IULIA representation.
The IULIAStruct struct, which generates code for a Flint struct, is shown in Listing 6.2.
Similarly, we implement IULIAFunction, IULIAAssignment, IULIAExpression, etc.

1 /// Generates code for a struct. Structs functions and initialisers are embedded in the
contract.

2 public struct IULIAStruct {
3 var structDeclaration: StructDeclaration
4 var environment: Environment
5
6 func rendered() -> String {
7 // At this point, the initializers have been converted to functions.
8
9 return structDeclaration.functionDeclarations.compactMap { functionDeclaration in
10 return IULIAFunction(
11 functionDeclaration: functionDeclaration,
12 typeIdentifier: structDeclaration.identifier,
13 environment: environment
14 ).rendered()
15 }.joined(separator: "\n\n")
16 }
17 }

Listing 6.2: IULIAStruct definition, which Generates Code for Flint Structs

6.7.3 Public Functions and Application Binary Interface

Flint’s Application Binary Interface (ABI) specifies at the bytecode level how Ethereum users
and other smart contracts can call the public functions of a Flint smart contract. Flint’s ABI
follows Solidity’s ABI, which allows interoperability between the two languages.

Users can call a smart contract’s function on Ethereum is performed by creating a transac-
tion, and specify which function to call with which arguments in the transaction payload.
Transaction payloads are raw bytes, thus the data needs to be encoded.

Function Resolution

Specifying which function to call is done via encoding the function’s signature. The encoding
is performed as follows.

1. Canonicalising the function signature. The canonical form of a function f with three
parameters of types T1, T2, T3 is f(T1,T2,T3). A function f with no arguments has
the canonical form f(). Public functions, which can be called from outside the smart
contract, can only carry parameters of basic types (except for implicit parameters such
as in a @payable function). The canonical IR type for each basic type is described in
Figure 6.3.

2. Computing the Keccak-256 hash of the canonical form.

3. The first four bytes of the hash constitute the final encoding.
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Flint type Canonical IR type

Address address

Int uint256

Bool uint256

String bytes32

Figure 6.3: Canonical Types

For example, a function f with parameters Int and Bool, has canonical form f(uint256,uint256).
The encoding of f is the first four bytes of the Keccak-256 hash, i.e., 0x13d1aa2e.

Currently, Flint uses 256-bit values to represent integers and booleans, but we are planning
to optimise memory usage to use fewer bytes (especially for booleans). see section 7.1.7 for
more details.

Specifying Function Arguments

Function arguments are appended to the function signature hash, as a hexadecimal value.
Calling f with arguments 100 and true would be encoded as 0x64 and 1, padded with zeros
to fill a 256-bit value.

An Ethereum user or another smart contract can thus call f with arguments 100 and true by
entering the following value in the transaction payload (without newline characters):

0x13d1aa2e
0000000000000000000000000000000000000000000000000000000000000064
0000000000000000000000000000000000000000000000000000000000000001

6.8 Internal functions

6.8.1 Pass by Reference Implementation

A struct value passed as an inout argument to a function is an implicit reference to either an
EVM memory location or an EVM storage location. When accessing the memory location,
the runtime needs to know whether it should read the value from memory or from storage. To
support this, when a struct is passed by reference to a function, an extra boolean argument,
specifying the location of the reference, is inserted in the argument list of the function call.
If the compiler cannot determine the location of the reference statically, a special isMem
argument is passed. If it is statically known that a reference is a memory location or a
storage location, the value 0 or 1, respectively, is passed.

We provide an example contract Listing 6.3, and its generated IR code in Listing 6.4. The
function foo takes an inout parameter, indicating it is passed by reference. The compiler
inserts an isMem parameter to indicate whether the reference is a memory location or a
storage location. When bar is called, the compiler replaces the reference to the storage
property element by its offset in storage. The second argument is 0, to indicate the value
is a storage property. When passing arg as a reference, we do not know its provenance
statically. Therefore, we forward its isMem argument. When calling baz, we know that s is a
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memory reference (local variables are stored in memory), so we pass the value 1 for its isMem
parameter.

1 contract C {
2 var element: S
3 }
4
5 C :: (any) {
6 // Initialiser omitted.
7
8 mutating func foo(arg: inout S) {
9
10 bar(&self.element, &arg)
11 }
12
13 func bar(a: inout S, b: inout S) {
14 var s: S = S()
15
16 baz(&b, &s)
17 }
18
19 func baz(b: inout S, c: inout S) {
20 // Body
21
22 }
23
24 }

Listing 6.3: C Contract

1
2
3
4
5
6
7 // Generated IR code
8 function foo(_arg, _arg$isMem) {
9 // ’0’ as ’element’ is a storage location.

10 bar(add(0, 0), 0, _arg, _arg$isMem)
11 }
12
13 function bar(_a, _a$isMem, _b, _b$isMem) {
14 let _s := flint$allocateMemory(0)
15 S_init(_s, 1) // ’1’ as ’_s’ is a memory

location.
16 baz(_b, _b$isMem, _s, 1)
17 }
18
19 function baz(_b, _b$isMem, _c, _c$isMem) {
20 // Body
21
22
23 }

Listing 6.4: Generated Bytecode

6.8.2 Mangling

Local variable and parameter names are prepended with an underscore to avoid clashes with
IULIA keywords, e.g., a parameter p will be referred to as _p after code generation.

Struct function names are mangled to support function overloading and defining functions
of the same name in different structs. Contract function names are not mangled, as external
smart contracts and users rely on knowing their exact name to call them. Thus, overloading
is not supported for contract functions.

A function f declared in a struct S with parameters of types T1, T2, T3, the mangled name
is S_f_T1_T2_T3. If a parameter is passed inout, its type is prepended with $inout when
mangling, e.g., S_f_$inoutT1.

When calling struct functions, a reference to the receiver is passed inout as the first argument,
with its corresponding $isMem parameter as described in 6.8.1.

6.9 Storage and Memory Organisation

The storage and memory of a Flint smart contract are organised similarly. The runtime
functions load and store (see Table 6.1) work for both variants.

A contract’s state properties are stored in EVM storage sequentially, except for values in
dynamic arrays and dictionaries.
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Local variables are stored in memory, and are allocated dynamically. The allocateMemory
runtime function reserves a number of bytes in memory, and returns the start pointer of the
block. The first 64 bytes of memory (8 words) are reserved as scratch space and can be
used to perform temporary computation, or load values into memory to compute sha3 hashes
or emit Ethereum events. Memory location 0x40 (64th byte) holds a pointer to the next
available memory location (initially 0x60). Because Ethereum transactions are quite short,
we have not implemented a memory freeing mechanism yet.

6.9.1 Contracts and Structs

State properties of smart contracts are stored contiguously in storage, starting at location 0.
Each state property occupies one word (32 bytes) in the case of basic types (see Figure 6.3),
or multiple words when storing structs or fixed-sized arrays.

Structs can also be stored in memory.

6.9.2 Arrays and Dictionaries

A fixed-size array of size n of element type of size e is allocated n ∗ e bytes in storage or
memory.

Dynamically-sized types, such as arrays and dictionaries, are not allocated contiguously.
Metadata for dynamically-sized types is stored in a single byte. The metadata byte for
arrays specifies the number of elements in the array, and it is unused for dictionaries. The
location of the metadata byte is used for retrieving the offset of a value at a given key.

The deterministic operation which determines the storage offset for a value of key k is in a
dictionary for which the metadata is stored at offset d is:

DynStorageOffset(d, k) , Keccak-256(d · k)

where · is the concatenation operator.

The hashing operation returns an offset into storage which, for two distinct pairs of key and
dictionary offsets, yields the same value (i.e., collides) with a very low probability (≈ 1

2128
).

The offsets for consecutive keys do not necessarily yield consecutive offsets for their associated
values. Practically, value offsets can be any number between 0 and 2256. Although this would
be problematic for traditional computer architectures, as 2256 bytes would need to need to
be allocated for each smart contract, it is not a problem on Ethereum as storage is itself a
key-value mapping which is efficiently allocated. Storage accesses yield the same gas cost
regardless of which location is accessed.

Accessing values in a dynamic array is performed similarly, with the key value k being the
integer index into the array.

Memory is not a key-value store, but a contiguous sequence of bytes. Allowing value offsets to
be any number between 0 and 2256 would yield enormous gas costs, as 2256 bytes of memory
would have to be allocated in the worst case. We need another scheme to implement dynamic
dictionaries and arrays in memory, which we have not implemented yet.
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6.10 Runtime Functions

The Flint runtime contains 20 runtime functions to perform low-level operations. A runtime
function f can be called from the Flint standard library using flint$f. Runtime functions
cannot be called from user-defined code. We provide a short overview of Flint’s runtime
functions in Figure 6.1.

Function Description

selector() Returns the first four bytes of the Ethereum
transaction payload (per the ABI, see subsec-
tion 6.7.3), to determine which function to
call.

decodeAsAddress(offset) Decodes the argument at the given byte offset
of the transaction payload as an address.

decodeAsUInt(offset) Same as above, but for integer arguments.

store(ptr, val, isMem) Stores the given value at the given pointer, in
storage or memory according to isMem.

load(ptr, isMem) Loads a value from storage or memory.

computeOffset(base, offset, isMem) Computes the offset of a value in a data type
which starts at the given base. Accesses both
storage and memory in a word addressed fash-
ion.

allocateMemory(size) Allocates a block of the given size in memory.

isValidCallerCapability(address) Indicates whether the caller has the given
caller capability.

isCallerCapabilityInArray(offset) Indicates whether the caller has one of the
caller capabilities in the array starting at off-
set.

return32Bytes(v) Terminates the Ethereum transaction, return-
ing a 32 byte value.

isInvalidSubscriptExpression(index,
arraySize)

Returns whether the given array index is out
of bounds with respect to the array’s size.

storageFixedSizeArrayOffset(offset,
index, arraySize)

Computes the offset of a fixed sized array.

storageArrayOffset(arrayOffset, in-
dex)

Computes the offset of a dynamic array.

storageDictionaryOffsetForKey(offset,
key)

Computes the offset of value corresponding to
the given key, given the dictionary’s offset.

send(value, address) Sends Wei to the given Ethereum address.

fatalError() Terminates the transaction, reverting all state
changes.
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add(a, b) Computes a + b, causing a fatalError() if an
overflow occurs. We detect overflows by check-
ing whether the result of the operation is big-
ger than a

sub(a, b) Computes a - b, causing a fatalError() if an
overflow occurs. We check whether b is bigger
than a to detect overflows.

mul(a, b) Computes a * b, causing a fatalError() if an
overflow occurs. We check whether the result
divided by a is equal to b.

div(a, b) Computes a / b, causing a fatalError() if b
is zero.

Table 6.1: Flint Runtime Functions

6.11 Intermediate Representation Organisation

6.11.1 IR Overview

We take a look at the structure of the intermediate representation code the Flint compiler
generates for the following Flint contract.

1 contract Counter {
2 var value: Int = 5
3 }
4
5 Counter :: (any) {
6 public init() {}
7
8 public func getValue() -> Int {
9 return value
10 }
11
12 mutating public func set(value: Int) {
13 self.value = value
14 }
15 }

Listing 6.5: Flint Counter Contract

1. Selecting the function to execute. When the smart contract receives a function call,
the first step is to determine which function to execute. The runtime function selector()
decodes the first four bytes of the transaction data to determine which function should be
called. The four bytes are compared to the encoding of the public functions defined in
the contract, using a switch statement generated at compile time. If no match is found,
an exception is thrown. The function arguments are then decoded from the transaction
payload, and are passed to the relevant function. An IR function is generated per Flint
contract function.

1 switch flint$selector()
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2
3 case 0x20965255 /* getValue() */ {
4 flint$return32Bytes(getValue())
5 }
6
7 case 0x60fe47b1 /* set(uint256) */ {
8 set(flint$decodeAsUInt(0))
9 }
10
11 default {
12 revert(0, 0)
13 }

Listing 6.6: Intermediate Representation Example

2. Contract function definitions. The next part of the code consists of the generated code
for user-defined contract functions. The IULIA code does not include explicit declarations of
state properties, as accesses to storage properties in functions are represented as static offsets
into memory.

14 function getValue() -> ret {
15 ret := sload(add(0, 0))
16 }
17
18 function set(_value) {
19 sstore(add(0, 0), _value)
20 }

Listing 6.7: Contract Functions

3. Struct function definitions. The function code for each user-defined and standard
library struct is included next. The first parameter is the receiver, _flintSelf.

21 // Standard library struct functions
22
23 function Wei_init_Int(_flintSelf, _flintSelf$isMem, _unsafeRawValue) {
24 flint$store(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem), _unsafeRawValue,

_flintSelf$isMem)
25 }
26
27 ...

Listing 6.8: Struct Functions

4. Runtime functions. Finally, we include the definition of each runtime function.
28 // Runtime functions
29
30 function flint$decodeAsUInt(offset) -> ret {
31 ret := calldataload(add(4, mul(offset, 0x20)))
32 }

Listing 6.9: Runtime Functions

6.11.2 Embedding in a Solidity File

The IR code is placed within the fallback function of a Solidity file, as shown in Listing 6.10.
The fallback function is executed when any function call targeting the Solidity contract is
performed.
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Figure 6.4: The Functions Which Can Be
Called on the Flint Contract Counter, With-
out Using the Generated Interface.

Figure 6.5: The Functions Which Can Be
Called on the Flint Contract Counter, Using
the Generated Interface.

33 // Solidity file
34 contract Counter {
35 function () public payable {
36 assembly {
37 switch flint$selector()
38 // rest of IR
39 }
40 }
41 }

Listing 6.10: Embedding the IR Code in a Solidity File

The generated Solidity file can serve as an input to the tools built for Solidity, such as
analysers and IDEs like Remix [38]. It also allows developers to use testing frameworks such
as Truffle [50], which we use to test Flint’s generated bytecode (see section 6.13). However,
as all the functions are accessed through the fallback function, their signatures are not visible
at the Solidity level. For this reason, the compiler also produces a separate Solidity interface
which includes the signatures of the contract’s public functions. Solidity requires functions in
interfaces to be marked external1. Non-mutating functions are marked as view in the Solidity
signature. This allows tools to interpret Flint contracts through the generated interface. An
example of a generated interface is shown in Listing 6.11.

42 interface _InterfaceCounter {
43 function getValue() view external returns (uint256 ret);
44 function increment() external;
45 function set(uint256 _value) external;
46 }

Listing 6.11: Generated Solidity Interface for a Flint Contract

When deploying the generated Solidity file without its generated interface, the Remix IDE [38]
does not know which functions can be called on the contract apart from the fallback function,
as shown in Figure 6.4. When interpreting a deployed contract using the generated interface,
Remix displays the functions which can be called, as shown in Figure 6.5.

The full embedded IR code for Listing 6.5 is in Appendix F.

1We thank GitHub user frogg for implementing this.
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6.11.3 Contract Initialisation

The contract initialiser IR code is generated separately from the rest of the function’s con-
tracts. This is because it cannot be placed in the fallback function of the Solidity file, as the
fallback function is not called during contract Initialisation. Instead, we add a constructor
function in the Solidity function and embed the code within it:

47 // Solidity file
48 contract Counter {
49 constructor() public {
50 assembly {
51 // Initialises value to 5, as specified on line 2 of the Flint contract.
52 sstore(add(0, 0), 5)
53 // etc.
54 }
55 }
56
57 function () public payable {
58 assembly {
59 switch flint$selector()
60 // rest of IR
61 }
62 }
63 }

Listing 6.12: Embedding the IR in a Solidity file

In Solidity, functions which are defined in an assembly block are not accessible in other as-
sembly blocks. To support calling functions within the contract initialiser, the generated
function declarations for each struct and contract function are included in the Solidity con-
structor’s assembly block as well. This duplication is necessary to make Flint contracts work
with tools built for Solidity, and will not occur when the Solidity compiler supports compiling
standalone IULIA files.

6.11.4 Alternative Intermediate Representations

Using an intermediate representation helped us avoid writing a bytecode generator. Even
though emitting bytecode presents advantages such as supporting fine-tuned performance
optimisations, emitting to an IR allows us to leverage tools built for the IR. Embedding the
IR code into a Solidity file allows us to use the Solidity compiler, analysers, and IDEs, as
shown in the previous section. If a better IR is developed in the future, we can reimplement
the code generation portion of the compiler, without modifying anything else.

Another choice for an intermediate representation could have been LLL, or Lisp-Like Lan-
guage, which was developed by the Ethereum Foundation before Solidity. LLL does not
seem to prevent benefits over IULIA, and development for the LLL compiler seems to have
stopped.

6.12 Command-line Tool

The command-line usage of flintc is shown in Listing 6.13. flintc is compatible on macOS
and Linux operating systems.
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Usage:
$ flintc <input file>

Arguments:

input file - The input file to compile.

Options:
--emit-ir [default: false] - Emit the internal representation of the code.
--emit-bytecode [default: false] - Emit the EVM bytecode representation of the code.
--dump-ast [default: false] - Print the abstract syntax tree of the code.
--verify [default: false] - Verify expected diagnostics were produced.

Listing 6.13: Command-line Usage of flintc

We cover the installation process for the Flint compiler in Appendix B.

6.13 Testing

To ensure the correctness of our implementation, we create an automated test suite for the
different stages of our compiler and the produced bytecode. We also implement an automated
deployment infrastructure for flintc binaries using GitHub Releases.

Our development workflow is described in Figure 6.6. We use Travis CI [51] to run our tests on
remote Linux and macOS servers. To test the compiler, we implement tests verifying whether
the AST produced by the parser is correct (see subsection 6.13.1), and tests to verify the
compiler produces the valid warnings and errors (see subsection 6.13.2). In addition, we test
the behaviour of the bytecode produced by the Flint compiler by running a local simulated
Ethereum blockchain (see subsection 6.13.3).
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Figure 6.6: Overview of Flint’s Continuous Integration infrastructure

Our syntax and semantic tests are available in the Tests/ParserTests/ and Tests/Seman-
ticTests/ directories of the Flint project. Instead of maintaining a consolidated list of tests,
we use the Lite [52] library to automatically find and run tests in the Tests/ directory. Our
functional tests are located in Tests/BehaviorTests.

6.13.1 Syntax Tests

To verify the correctness of the AST produced by the parser, we create an infrastructure
similar to LLVM’s [53] FileCheck [54], which compares the contents of two files using a
flexible pattern matcher. We use the --dump-ast flag when calling flintc to output the
produced AST of the input program as text, which we compare with the AST we expect. For
each test file, we specify the expected AST nodes inline in the source, by using the CHECK-
AST prefix. We provide an example in Listing 6.14. FileCheck checks whether the nodes of
AST flintc produces for this program (ignoring comments) match the ones specified in the
comments, in the same order.

1 // CHECK-AST: TopLevelModule
2 // CHECK-AST: TopLevelDeclaration
3 // CHECK-AST: ContractDeclaration
4 // CHECK-AST: identifier "Test"
5 contract Test {
6
7 // CHECK-AST: VariableDeclaration
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8 // CHECK-AST: identifier "owner"
9 // CHECK-AST: built-in type Address
10 var owner: Address
11
12 // CHECK-AST: VariableDeclaration
13 // CHECK-AST: identifier "arr"
14 // CHECK-AST: FixedSizeArrayType
15 // CHECK-AST: built-in type Int
16 // CHECK-AST: size 4
17 // CHECK-AST: ArrayLiteral
18 var arr: Int[4] = []
19
20 // CHECK-AST: VariableDeclaration
21 // CHECK-AST: identifier "arr2"
22 // CHECK-AST: ArrayType
23 // CHECK-AST: built-in type Int
24 // CHECK-AST: ArrayLiteral
25 var arr2: [Int] = []
26
27 // CHECK-AST: VariableDeclaration
28 // CHECK-AST: identifier "numWrites"
29 // CHECK-AST: built-in type Int
30 // CHECK-AST: 0
31 var numWrites: Int = 0
32 }

Listing 6.14: Flint Syntax Test

We implement 8 syntax tests.

6.13.2 Semantic Tests

We also verify that the compiler produces the expected errors and warnings, and does not
produce unexpected ones. We write test programs, and specify inline in the source file
the expected diagnostics, using the expected-error, expected-warning, and expected-note
prefixes. We provide an example in Listing 6.15. When flintc runs with the --verify
flag, we check whether the expected diagnostics are produced at the lines where they are
defined.

1 contract Constants {
2 var a: Int // expected-note {{’a’ is uninitialized}}
3 var b: Int = "a" // expected-error {{Incompatible assignment between values of type ’Int’

and ’String’}}
4 let c: Int = 2 + 3
5 let d: Int = 3
6 let e: Int // expected-note {{’e’ is uninitialized}}
7 }
8
9 Constants :: (any) {
10 public init() {} // expected-error {{Return from initializer without initializing all

properties}}
11
12 mutating func foo() {
13 let a: Int = 2 // expected-note {{’a’ is declared here}}
14 a = 3 // expected-error {{Cannot reassign to value: ’a’ is a ’let’ constant}}
15

83



Chapter 6. Compiler and Code Generation

16 let b: Int = a
17 self.a = 3
18
19 if true {
20 a = 5 // expected-error {{Cannot reassign to value: ’a’ is a ’let’ constant}}
21 } else {
22 a = 7 // expected-error {{Cannot reassign to value: ’a’ is a ’let’ constant}}
23 }
24
25 d = 4 // expected-error {{Cannot reassign to value: ’d’ is a ’let’ constant}}
26 }
27 }

Listing 6.15: Flint Semantic Tests

We implement 16 semantic tests.

6.13.3 Functional Tests

We use the Truffle [50] library for Solidity smart contracts to test the behaviour of the
bytecode the Flint compiler produces. We embed our generated IR code in a Solidity file,
and use the generated Solidity interface (see subsection 6.11.2) for Truffle to interpret Flint
contracts as Solidity contracts. We write our tests in JavaScript using the Web3 [33] library
to call smart contract functions from Truffle. An example is given in Listing 6.16, in which
we verify the functionality of a bank contract.

1 contract(config.contractName, function(accounts) {
2 it("should correctly mint account1", async function() {
3 const instance = await Contract.deployed();
4 let t;
5
6 await instance.mint(0, 20);
7
8 t = await instance.get(0);
9 assert.equal(t.valueOf(), 20);
10
11 t = await instance.get(1);
12 assert.equal(t.valueOf(), 0);
13 });
14
15 it("should transfer funds from account1 to account2", async function() {
16 const instance = await Contract.deployed();
17 let t;
18
19 await instance.transfer1(0, 1, 5);
20
21 t = await instance.get(0);
22 assert.equal(t.valueOf(), 15);
23
24 t = await instance.get(1);
25 assert.equal(t.valueOf(), 5);
26 });
27
28 it("should transfer funds from account2 to account1", async function() {
29 const instance = await Contract.deployed();
30 let t;
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31
32 await instance.transfer2(1, 0, 2);
33
34 t = await instance.get(0);
35 assert.equal(t.valueOf(), 17);
36
37 t = await instance.get(1);
38 assert.equal(t.valueOf(), 3);
39 });
40 });

Listing 6.16: Functional Test

We implement 11 functional tests.

6.13.4 Automated Deployments

We implement an infrastructure allowing us to easily deploy the latest version of flintc
as a binary executable. Flint binary executables can be downloaded from https://github.
com/franklinsch/flint/releases. To trigger a build, we push a git tag of the form flint-
$VERSION-snapshot-$DATE-$BUILD-$PLATFORM on the master branch of Flint’s GitHub reposi-
tory, where $VERSION refers to the Flint compiler version (0.1 at the moment), $DATE refers
to the date of the tag creation, $BUILD refers to build number for the day (a, b, etc.), and
$PLATFORM is macos or linux. We use a script to generate such tags automatically in utils/-
tag_snapshot.sh.

When tags are pushed, GitHub triggers a build on Travis CI, which runs make release to
build a release version of the compiler. The binary executable for each platform, along with
the standard library files, are made available as an archive on the GitHub release page.

6.14 Remarks

We have implemented a well designed and extensible compiler for Flint. We can compile
a variety of versatile Flint programs, which we use in our extensive testing infrastructure
which allows us to quickly iterate over compiler and language features confidently. Our AST
Pass mechanism allows the easy addition of finer grain AST passes in the future, including
different optimisation passes for code generation in the future. We provide an extensive suite
of compiler diagnostics when performing semantic analysis and type checking.

Our generated intermediate representation code can be embedded in a Solidity file and Flint’s
ABI is compatible with Solidity’s, allowing us to leverage the development and testing tools
built for Solidity. In the future, we might consider developing our own intermediate repre-
sentation for formal verification purposes, similar to Scilla [40].
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Chapter 7

Future Implementation Work

Designing new features for programming languages require significant investigation work. It
requires considering various scenarios and understanding the impact on existing features.
In this chapter, we present features we have designed but not implemented due to time
constraints.

7.1 Language Features

7.1.1 Type States

The first Parity Multi-sig wallet hack, described in 2.3.2, was the result of a function being
called at the wrong time. Specifically, the initWallet function was supposed to be called
exclusively during the “initialisation” phase of the smart contract. The developers resolved
the issue by adding an only_uninitialized Solidity modifier to the function, which checks
whether an owner has been set to the wallet. The “initialisation” phase is not explicitly
encoded in the smart contract, as Solidity does not support any specific construct to represent
such phases.

The programming language Bamboo [42] provides explicit syntax for encoding these phases,
by regarding smart contracts as state machines. Flint has a mechanism to protect function
calls from unauthorised users through caller capabilities, which we believe can be comple-
mented using a type state [55] mechanism. The type state mechanism would protect functions
from being called at the wrong time. Including such restrictions would be an opt-in feature
for developers, and would use the same constructs as caller capabilities blocks.

We provide an example usage of this feature by defining an Auction smart contract, which
allows users to bid for an item by sending Ether to a smart contract.

Specifying the contract’s type states. An auction can be in three states: Preparing,
InProgress, and Terminated. These are specified on line 1 and describe the state in which
the contract is in. Line 6 defines a state property which records which state the contract is
currently in. After initialisation, it is in state Preparing.

1 contract Auction (Preparing, InProgress, Terminated) {
2 var beneficiary: Address
3 var highestBidder: Address
4 var highestBid: Wei
5
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6 var state: State = Preparing
7 }

Initialiser. The initialiser is called when the contract is deployed. Implicitly, it can only be
called during the Preparing state, as it is the default state.

8 Auction :: caller <- (any) {
9 public init() {
10 self.beneficiary = caller
11 self.highestBidder = caller
12 self.highestBid = highestBid
13 }
14 }

Preparing the auction. The beneficiary can set a new beneficiary or open the auction
when the contract is in the Preparing state.

15 Auction :: (beneficiary, Preparing) {
16 mutating func setBeneficiary(beneficiary: Address) {
17 self.beneficiary = beneficiary
18 }
19
20 mutating func openAuction() {
21 self.state = InProgress
22 }
23 }

Bidding and ending the auction. While the auction is in progress, anyone can bid, and
the beneficiary can end the auction.

24 Auction :: (any, InProgress) {
25 @payable
26 mutating func bid(implicit value: Wei) {
27 // body
28 }
29 }
30
31 Auction :: (beneficiary, InProgress) {
32 mutating func endAuction() {
33 self.state = Terminated
34 }
35 }

Retrieving information. While the auction is in progress or has been terminated, anyone
can get the highest bidder’s address, and the highest bid.

36 Auction :: (any, InProgress, Terminated) {
37 func getHighestBidder() -> Address {
38 return highestBidder
39 }
40
41 func getHighestBid() -> Int {
42 return highestBid.getRawValue()
43 }
44 }

Collecting funds. After the auction has been terminated, the beneficiary can collect
funds.
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45 Auction :: (beneficiary, Terminated) {
46 mutating func collectFunds() {
47 send(beneficiary, &highestBid)
48 }
49 }

7.1.2 Bounded Loops

To aid with formal verification, we do not plan to support unbounded loops. A function call
resulting in an infinite loop is aborted when the attached gas is exhausted. Furthermore, static
analysers cannot always determine how many iterations the loop will cycle through.

Instead, we plan to add support for iterating over data structures, such as arrays or close
ranges of numbers. As data structures cannot occupy infinite memory, loops are bounded by
their size. An example is shown in Listing 7.1. The for-in loop allows to determine a bound
to the computational cost of executing the function, in terms of the elements array’s size.
This important for estimating the gas cost of functions, as explained in 7.2.

1 func getSum() -> Int {
2 var sum = 0
3
4 for i in elements {
5 sum += i
6 }
7
8 return sum
9 }

Listing 7.1: Bounded Loops in Flint

7.1.3 External Function Calls

Flint smart contracts cannot currently call functions on other smart contracts. Flint will
support calling into other Flint smart contracts, or Solidity contracts. For Flint contracts,
the developer can import relevant source files to enable static checking of function calls.
For Solidity contracts, the canonical function signature (see section 6.7.3) will have to be
specified as a string. In Listing 7.2, we show how a bank contract could interact with the
logging contract Logger. In both cases, checking whether the contract is allowed to perform
the external call is the responsibility of the target contract.

1 Bank :: caller <- (any) {
2 func transferFunds(amount: Int, destination: Address, logger: Logger) {
3 // Transfer funds operation omitted.
4
5 // Log transaction.
6 logger.log(caller, destination, amount)
7 }
8 }

Listing 7.2: Flint External Call
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7.1.4 Capability Functions

Currently, function declarations are protected by caller capability groups. The caller must
have any of the caller capabilities in the group in order to call functions within the block.
To allow more complex caller capability checks, we would like to support calling functions
in caller capability groups. Such capability functions must not be mutating, take an Address
as their only parameter, have a boolean return type, and be declared in an (any) caller
capability block. We provide an example in Listing 7.3. The isRichCustomer function is
used as a capability function, and checks whether the caller has a Bank account with more
than 1000 Ether. The richDeposit function allocates a 1% interest every time a deposit is
made.

1 Bank :: (any) {
2 func isRichCustomer(address: Address) -> Bool {
3 return balances.keys.contains(address) && balances[address] > 1000
4 }
5 }
6
7 Bank :: caller <- (isRichCustomer) {
8 @payable
9 mutating func richDeposit(implicit value: inout Wei) {
10 balances[caller].transfer(&value)
11
12 // Give the customer a 1% interest.
13 interests[caller].transfer(&interestPool, value.getRawValue() / 100)
14 }
15 }

Listing 7.3: Capability Functions

Static checks for internal calls would be also be performed if a function calls a function
declared in the same caller capability group.

7.1.5 Attempt Function Calls

When performing internal function calls, it may not be statically guaranteed that the caller
has the appropriate capability, such as in Listing 7.4. bar cannot be called from foo, as
statically, we do not know whether the caller holds the admin capability.

1 contract C {
2 var admin: Address
3 }
4
5 C :: (any) {
6 // Initialiser omitted.
7
8 func foo() {
9 bar() // Invalid.
10 }
11 }
12
13 C :: (admin) {
14 func bar() {}
15 }

Listing 7.4: Insufficient Static Caller Capabilities
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Attempting to call a protected function could be a useful feature. We propose the concept of
attempt calls, which perform function calls by checking caller capabilities at runtime:

• try? bar(): The function bar’s body is executed if at runtime, the caller’s capability
matches bar’s. The expression try? bar() returns a boolean.

• try! bar(): If at runtime, the caller does not have the admin capability, an exception
is thrown and the body doesn’t get executed.

7.1.6 Late Assignment of Local Constants

Currently, a local let-constant needs to be assigned a value at the declaration site. However,
we would like to improve upon this in the future by allowing let-constants to be initialised
after they have been declared, but before they are accessed. This is particularly useful when
a variable is assigned a value in different branches, such as in Listing 7.5.

1 func foo() -> Int {
2 let a: Int
3
4 if cond {
5 a = 1
6 } else {
7 a = 2
8 }
9
10 return a
11 }

Listing 7.5: Late Let-constant Initialisation

7.1.7 Other Improvements

In the future, we would like to bring other language and compiler improvements to Flint. An
extensive list of issues can be found on GitHub [24].

Language Features

We discussed new language features previously (supporting traits and safe external calls), and
would also like to implement new ones, such as supporting fallback functions, user-defined
exception, and more.

Compiler Features

In terms of compiler features, we are planning to bring improvements to the semantic analyser,
such as producing warnings when variables are unused or can be made let-constants. We
would also like to optimise runtime memory usage, for example, by making the default integer
size smaller (it is currently 256 bits) to store multiple integers in a single EVM word. This
would result in lower gas costs.
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7.2 Gas Estimation

Flint was built with formal verifiability in mind. We would also like to build tools to precisely
determine the gas costs required to call functions in a smart contract. By knowing the gas cost
for each EVM instruction, and disallowing unpredictable patterns such as infinite loops, we
believe we can compute the gas cost for each function in terms of each function’s arguments
and the state properties it uses. For example, for the example below, we could estimate
distribute to require 420 + beneficiaries.count * 1500 gas.

1 contract Distribution {
2 var admin: Address
3 var total: Wei
4 }
5
6 Distribution :: (admin) {
7 mutating func distribute(beneficiaries: [Account]) {
8 let amount = total.getRawValue() / beneficiaries.count
9
10 for beneficiary in beneficiaries {
11 let payout = Wei(&total, amount)
12 send(beneficiary, &payout)
13 }
14 }
15 }

7.3 Flint Package Manager

The Flint Package Manager allows developers to share and use Flint contracts. We aim
to implement a Package Manager smart contract to record package information, including
hashes of the source code and security warnings produced by the Flint compiler. The original
source code of packages would be stored in a traditional database, as storing large files on
Ethereum is very costly. The Flint compiler would verify the integrity of downloaded packages
by computing a hash of the package, and comparing it against the value stored in the Package
Manager contract. Developers can use packages to use library code from other contracts, and
safely interact with deployed Flint contracts. Storing security warnings about packages allows
developers to know whether a package is safe to use. These warnings cannot be overridden
by Ethereum users, and can only be set when uploading a Flint package.

In addition, we aim for the package manager to be the central location for the source code
of all deployed Flint contracts. As only bytecode is maintained by miners, users would use
the Flint Package Manager to Flint source code of contracts.

We provide a prototype of the Flint Package Manager smart contract in Appendix D.

7.4 Remarks

Programming languages take years to develop. Determining which features to implement is
not straightforward, and requires careful analysis. We designed extensions to Flint we think
would be a natural fit. Type states allow regarding a smart contract as a state machine,
hence facilitating reasoning by better grouping state. Capability functions implement a more
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versatile mechanism for disallowing unauthorised accesses to functions. In terms of tooling,
gas estimation and the Flint Package Manager will be essential elements in the Flint toolchain,
making the use of Flint even more compelling.
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Evaluation

In this chapter, we show how Flint allows the writing of safe and expressive programs. We
evaluate the language from a qualitative and quantitative perspective. We compare Flint
to Solidity, as it is the most used programming language to write Ethereum smart con-
tracts, and in some cases to Vyper, an emerging new language developed by the creators of
Ethereum.

We translate Solidity and Vyper contracts to Flint, allowing us to see code differences, observe
issues raised by various analysers, and compare runtime performance. We were able to use
the same analysers by embedding Flint’s IR code in a Solidity file1.

The examples we choose highlight safety and performance differences between Solidity, Vyper,
and Flint programs. We also see how Flint helps prevent TheDAO (see subsection 2.3.1)
and the Proof of Weak Hands Coin (see subsection 2.3.5) vulnerabilities.

The full programs in each language are in Appendix G.

8.1 Performance and Programming Style

We evaluate the performance of Flint’s caller capabilities, Asset types, and safe arithmetic
operations. We also observe differences in code conciseness when using Asset types.

8.1.1 Caller Capabilities

We write equivalent Flint, Solidity, and Vyper smart contracts to compare the differences in
runtime performance when using caller capabilities. We define simple functions which can
be called by any user, some by owner, and some by any customer in the customers array. In
Solidity, we implement two modifiers, onlyOwner and anyCustomer, which check whether the
caller is owner or is in the customers array, respectively. Vyper does not support a modifier
mechanism. Instead, we include assertions at the beginning of relevant function bodies.

1As these were built with Solidity in mind, they did not present high code coverage results when running
with Flint code. This is because they rely on Solidity’s mechanism to determine which function body to
execute to discover the contract’s functions. As Flint’s mechanism is slightly different, analysers do not
always discover all the executable branches of the program. We asked the developers of the analysers to
enable integration with Flint, but the work has not been completed yet.
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We expect similar gas costs for Solidity, Vyper, and Flint for simple functions with no addi-
tional internal calls, as the runtime behaviour of the languages is similar. We also note that
Flint’s and Vyper’s safe arithmetic operations, in this case addition, uses more gas than the
regular addition operation Solidity provides. The full example is available in section G.1.
Flint does not require writing modifiers, like in Solidity:

Solidity

1 modifier onlyOwner {
2 require(msg.sender == owner);
3 _;
4 }
5
6 modifier anyCustomer {
7 uint numCustomers = customers.length;
8 bool found = false;
9
10 for (uint i = 0; i < numCustomers; i++) {
11 if (customers[i] == msg.sender) { found = true; }
12 }
13
14 require(found);
15 _;
16 }

Code organisation. The organisation of the smart contracts present notable differences.
In Solidity and Vyper, the state and the functions are all defined at the top level of the
contract. Solidity does not enforce including the user-defined modifiers we have specified
in some function signatures, while Vyper does not support a modifier mechanism (we insert
assertions at the beginning of the function bodies).

Solidity

1 contract Caps {
2 address owner;
3 address[] customers;
4 uint256 counter;
5 modifier anyOwner {...}
6 modifier anyCustomer {...}
7 function anyUser() public constant returns(uint256) {...}
8 function ownerCall(uint counter) public constant onlyOwner returns(uint256) {...}
9 function customerCall(uint counter) public constant anyCustomer returns(uint256) {...}
10 function ownerInternalCalls() public onlyOwner {...}
11 function customerInternalCalls() public anyCustomer {...}
12 }

Vyper

1 owner: public(address)
2 customers: public(address[50])
3 counter: public(uint256)
4 @public @constant def anyUser() -> uint256
5 @private @constant def isCustomer(a: address) -> bool
6 @public @constant def customerCall(_counter: uint256) -> uint256
7 @public @constant def ownerCall(_counter: uint256) -> uint256
8 @public def ownerInternalCalls()
9 @public def customerInternalCalls()
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Flint

1 contract Caps {
2 var owner: Address
3 var customers: [Address]
4 var numCustomers: Int
5 var counter: Int
6 }
7
8 Caps :: owner <- (any) {
9 mutating public func addCustomer(customer: Address) {...}
10 public func anyUser() -> Int {...}
11 }
12
13 Caps :: (owner) {
14 public func ownerCall(counter: Int) -> Int {...}
15 public mutating func ownerInternalCalls() {...}
16 }
17
18 Caps :: (customers) {
19 public func customerCall(counter: Int) -> Int {...}
20 public mutating func customerInternalCalls() {...}
21 }

Analysis

We compare the result of the analyses performed by Oyente and Mythril for Solidity. Un-
fortunately, we were not able to find an analyser for Vyper. For the Solidity file, Oyente
reported a code coverage of 47.5%, and 33.7% for the Flint contract.

Issue Solidity Flint Details

Integer Overflow Yes No Both analysis tools detect that if the customers
array becomes too large, its length will overflow
in Solidity. This is an unlikely situation, but
nonetheless not possible in Flint thanks to the
overflow protecting operators.

Table 8.1: Analysis Results for CallerCaps

Performance

We compare the gas costs of executing each function in Table 8.2 in the Solidity, Vyper, and
Flint contracts. The Solidity and Flint gas costs have been retrieved from executing the calls
on our simulated Ethereum network, while the Vyper gas costs are estimates given by the
Vyper compiler. The tool to run Vyper code does not support obtaining the number of gas
consumed after calling a function. Overall, we observe that Flint is significantly faster when
functions perform internal calls to functions which require the same caller capability. This is
expected, as the caller capability check is only executed once.
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Operation Solidity Vyper
(esti-
mate)

Flint Difference
(Solidi-
ty/Vyper
vs Flint)

Possible Explanation

Deploying 438121 - 514268 S: -14.8% The Solidity optimiser produces
a smaller binary.

Any call 268 193 283 S: -5% V: -
32%

Determining which function was
called is slightly faster in Flint.

Owner call 633 655 836 S: -24% V:
-22%

The dynamic check for a sin-
gle caller capability is slightly
slower in Flint.

Owner many
internal calls

32662 171127 28673 S: +14% V:
+496%

Only one dynamic caller ca-
pability check is performed in
Flint. The gas cost would be
marginally smaller if we used
the &+ operator, which provides
unsafe overflowing semantics for
addition.

Customer call
(with 5 en-
tries in cus-
tomers)

3791 4401 1707 S: +122%
V: +158%

Flint’s array iteration algorithm
is better suited for small arrays.

Customer call
(with 20 en-
tries in cus-
tomers)

13136 11286 18047 S: -27% V:
-37%

Solidity’s array iteration algo-
rithm is better suited for larger
arrays.

Customer call
(with 50 en-
tries in cus-
tomers)

31434 24996 43847 S: -28% V:
-43%

Same as above.

Customer
many in-
ternal calls
(with 5
entries in
customers)

168804 635958 54426 S: +210%
V: +1068%

Only one dynamic caller ca-
pability check is performed in
Flint.

Customer
many in-
ternal calls
(with 20
entries in
customers)

510129 1634283 67326 S: +658%
V: +2327%

Same as above.
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Customer
many in-
ternal calls
(with 50
entries in
customers)

1192779 3624393 93126 S: +1181%
V: +3792%

Same as above.

Table 8.2: Gas Costs for CallerCaps. S and V refer to the gas cost differences between
Solidity and Vyper.

Conclusion

We observe the effect of using caller capabilities in Flint. The gas costs are similar for simple
examples using a caller capability backed by a single address. When calling a function which
calls multiple functions, requiring the same caller capability, Flint is up to 12 times faster
than Solidity, and 38 times faster than Vyper.

For caller capabilities backed by an array, the results vary. Flint code is cheaper to run
when the array is relatively small, but becomes more expensive when it is large. We believe
Solidity has a more efficient scheme for iterating over arrays. We are planning to optimise
Flint’s array iteration scheme. In the example which performs a large number of internal
calls, the Flint code is up to two times faster. This is possible as Flint performs a single
runtime check, whereas Solidity and Vyper perform one per function call.

8.1.2 Asset Types and Safe Arithmetic Operations

We define a smart contract to assess the safety and performance of Flint’s Asset operations.
The Bank smart contract uses Asset types, namely the Wei type. Customers can send Ether to
the contract, and Bank keeps track of how much each customer has sent. Customers can then
withdraw their Ether, or transfer it to another Bank account. This smart contract should
allow us to assess whether the Flint Asset operations are safe, and how much additional gas
they incur. We have not translated this contract to Vyper, as it does not present major code
design and runtime behaviour differences with its Solidity counterpart.

Depositing funds. The deposit function of both smart contracts are similar, and record
received Ether to state. Flint however encodes Wei in the Wei type, rather than as an
integer.

Solidity

1 function deposit() anyCustomer public payable {
2 balances[msg.sender] += msg.value;
3 }

Flint

1 @payable
2 public mutating func deposit(implicit value: Wei) {
3 balances[account].transfer(&value)
4 }
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Transferring funds internally. Using Flint’s Wei functions allows safer and more concise
code. In the Solidity contract, the transfer operation requires three lines of code, whereas
the Flint version requires one.

Solidity

1 function transfer(uint amount, address destination) anyCustomer public {
2 require(balances[msg.sender] >= amount);
3 balances[destination] += amount;
4 balances[msg.sender] -= amount;
5 }

Flint

1 public mutating func transfer(amount: Int, destination: Address) {
2 balances[destination].transfer(&balances[account], amount)
3 }

Withdrawing funds. The withdraw function is one line shorter in Flint as well. Essentially,
we do not need to check whether the account holder has enough funds to perform an operation,
as an exception is thrown if the result of an arithmetic operation overflows (wraps around from
0 to the maximum 256-bit value, or from the maximum 256-bit value to 0). When writing
the transfer function, which transfers Wei from the caller’s account to another account, we
initially forget to check whether the caller had enough funds to transfer the amount they
requested. Thus, when a caller requested to transfer an amount larger than they had, their
account balance would overflow and become a number close to the maximum 256-bit number.
This is an issue as they would be able to call withdraw to transfer all the Wei of the smart
contract to their Ethereum account.

Solidity

1 function withdraw(uint amount) anyCustomer public {
2 require(balances[msg.sender] >= amount);
3 balances[msg.sender] -= amount;
4 msg.sender.transfer(amount);
5 }

Flint

1 public mutating func withdraw(amount: Int) {
2 // Transfer some Wei from balances[account] into a local variable.
3 let w: Wei = Wei(&balances[account], amount)
4
5 // Send the amount back to the Ethereum user.
6 send(account, &w)
7 }

We also note that in Solidity, there is no built-in Wei type for representing currency. It is easy
to accidentally add currency to an account, or forget to do so. For example, when writing
withdraw, we could have forgotten to decrease Ether from the caller’s account before sending
the amount to their Ethereum account. This issue is not possible by using Wei’s initialiser
which atomically transfers a subset of another Wei variable to the receiver, which we use to
send the money.

We note that in Flint, we do not need to define our own onlyManager and anyCustomer to
control access to functions.
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Analysis

We compare the result of the analyses performed by Oyente and Mythril. For the Solidity
file, Oyente reported a code coverage of 91.3%, and 64.7% for the Flint contract.

Issue Solidity Flint Details

Integer Overflow Yes (5
cases)

No Both analysis tools find 4 potential inte-
ger overflows on lines 30 (the array can
become too large), and lines 34, 43, and
48 (the integer value in the balancesmap-
ping can become too large).

Table 8.3: Analysis Results for CallerCaps

Performance

Operation Solidity Flint Difference Possible Explanation

Deploying 422589 415901 +1.6% Solidity and Flint produce simi-
larly sized binaries.

Register 40741 61528 -34% Solidity is more efficient at adding
elements to an array.

Deposit 10 Ether 21460 24002 -11% This is because of the overhead
of Flint’s safe Asset operations,
which prevent overflows and state
inconsistencies.

Transfer 80 Wei 27200 30685 -11% Same as above.

Withdraw 5 Ether 14301 17245 -17% Same as above.

Mint 100 Wei 23098 20867 +10% Similar results.

Table 8.4: Gas Costs for Bank

Conclusion

The Flint version of the smart contract is marginally more expensive to run in terms of
gas costs. However, using the built-in Asset type Wei allow the use of safe currency transfer
operations. This is confirmed by the analysers, which highlight integer overflow vulnerabilities
for the Solidity contract, but none for the Flint version.

8.1.3 Auction

We translate a popular Solidity smart contract, Auction, in Flint and Vyper. This contract
is used as a main example in the Solidity documentation [5]. We look for differences in the
conciseness of code between the three languages, and try to find vulnerabilities in the Solidity
contract Flint is immune to. Unfortunately, we could not analyse Vyper code as we did not
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have access to any compatible analysis tool. This smart contract showcases the use of Asset
types and caller capabilities in Flint.

Bidding. Ethereum users send Ether to the auction smart contract in order to bid. If their
bid is the highest, it is recorded. Otherwise, the transaction is aborted.

Solidity

1 function bid() public payable {
2 require(now <= auctionEnd);
3 require(msg.value > highestBid);
4 if (highestBid != 0) {
5 pendingReturns[highestBidder] += highestBid;
6 }
7 highestBidder = msg.sender;
8 highestBid = msg.value;
9 emit HighestBidIncreased(msg.sender, msg.value);
10 }

Vyper

1 @public
2 @payable
3 def bid():
4 assert block.timestamp < self.auction_end
5 assert msg.value > self.highest_bid
6 if not self.highest_bid == 0:
7 self.pending_returns[highest_bidder] += highest_bid
8
9 self.highest_bidder = msg.sender
10 self.highest_bid = msg.value
11 log.Transfer(HighestBidIncrease(msg.sender, msg.value))

Flint

1 @payable
2 public mutating func bid(implicit value: Wei) {
3 assert(hasAuctionEnded == false) // The unary not (!) operator is not implemented yet.
4 assert(value.getRawValue() > highestBid.getRawValue())
5 if highestBid.getRawValue() != 0 {
6 pendingReturns[highestBidder].transfer(&highestBid)
7 }
8 highestBidder = caller
9 highestBid.transfer(&value)
10 highestBidDidIncrease(caller, value.getRawValue())
11 }

The bid function is implemented similarly in all three languages. The Solidity contract is
vulnerable to an integer overflow on line 5, as shown by the analysers’ findings in the table
below. This is however unlikely to happen as it would require the caller to send a very large
amount of Ether to the transaction.

The use of a pendingReturns mapping may seem unnecessary. When a user is outbid, their
bid in Ether is not immediately sent back to their account. Instead, the amount of Ether the
contract owes each bidder is stored in the pendingReturnsmapping. The author of the original
Solidity contract argues this is a safer approach as it avoid executing code in another smart
contract, hence avoiding reentrancy issues which would allow a bidder to retrieve more money
than they are owed. To the extent of our knowledge, this particular program is protected
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against such issues, and the indirection was included for teaching purposes. We also include
it in our Flint contract and in the Vyper contract, even though we could simply not use the
pendingReturns dictionary and replace line 6 in the Flint contract by send(highestBidder,
&highestBid).

Ending the auction. The original Solidity contract ends the auction at a given time. The
global variable now represents a UNIX time (seconds since 1970). We argue relying on time
when writing smart contracts is not a good approach. Both analysis tools Mythril [12] and
Oyente [11] recommend against using this approach. In general, Flint does not surface such
unsafe information to the developer by design. The time given by the now variable is the
UNIX time of the miner systems. We cannot assume the time set on these computers are
synchronised, or even similar. A large number of miners recording a wrong time can alter the
expected behaviour of the contract significantly. In this case, time is used to check whether
the auction is still running. The assertion on line 66 might fail for some miners, and not
for others, resulting in each miner having an inconsistent state of the smart contract. We
argue making the beneficiary call an endAuction function is a better approach, as it does rely
on the assumption that the miners’ time is synchronised. We implement the Vyper contract
with the time dependency, as this is how the authors of Vyper implemented it1.

Solidity

1 function auctionEnd() public {
2 require(now >= auctionEnd, "Auction not yet ended.");
3 require(!ended, "auctionEnd has already been called.");
4 ended = true;
5 emit AuctionEnded(highestBidder, highestBid);
6 beneficiary.transfer(highestBid);
7 }

Vyper

1 @public
2 def end_auction():
3 assert block.timestamp >= self.auction_end
4 assert not self.ended
5 self.ended = True
6 log.AuctionEnded(HighestBidIncrease(highestBidder, highestBid))
7 send(self.beneficiary, self.highest_bid)

Flint

1 SimpleAuction :: (beneficiary) {
2 public mutating func endAuction() {
3 assert(hasAuctionEnded == false)
4 hasAuctionEnded = true
5 auctionDidEnd(highestBidder, highestBid.getRawValue())
6 send(beneficiary, &highestBid)
7 }
8 }

Withdrawing Ether. The beneficiary can transfer the highest bid once the auction has
ended. In Solidity the send function on line 6 returns a boolean indicating whether the
transfer was successful. In Vyper and Flint, we throw an exception instead.

Solidity
1https://github.com/ethereum/vyper/blob/master/examples/auctions/simple_open_auction.v.py
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1 function withdraw() public returns (bool) {
2 uint amount = pendingReturns[msg.sender];
3 if (amount > 0) {
4 pendingReturns[msg.sender] = 0;
5
6 if (!msg.sender.send(amount)) {
7 pendingReturns[msg.sender] = amount;
8 return false;
9 }
10 }
11 return true;
12 }

Vyper

1 @public
2 def withdraw():
3 uint256 amount = pending_returns[msg.sender]
4 if amount > 0:
5 pending_returns[msg.sender] = 0
6 send(msg.sender, amount)

Flint

1 mutating func withdraw() {
2 var amount: Wei = Wei(&pendingReturns[caller])
3 assert(amount.getRawValue() != 0)
4 send(caller, &amount)
5 }

The withdraw function is significantly shorter in Flint. In Solidity, the amount owed is set
to 0 on line 4, sent on line 6, and potential failures are handled until line 8. We have similar
code in Vyper. In Flint, these operations are performed atomically in a single statement, on
line 3. The endAuction in Flint is protected by the beneficiary caller capability, allowing
only the beneficiary to end the auction.

Analysis

We compare the result of the analyses performed by Oyente and Mythril. For the Solidity
file, Oyente reported a code coverage of 95%, and 51.1% for the Flint contract.

Issue Solidity Flint Details

Timestamp De-
pendency

Yes No Both Oyente and Mythril warn that line 66 of the
Solidity contract (require(now >= auctionEnd))
rely on the environment information.

Integer Overflow Yes No Both analysis tools detect that line 37 of the So-
lidity contract (pendingReturns[highestBidder]
+= highestBid) can result in an integer overflow.

Transaction-
Ordering Depen-
dence (TOD)

Yes Yes Both analysis tools detect a TOD on lines 74 in
the Solidity contract and 63 in Flint. Specifi-
cally, if a bid is placed around the same time
endAuction is called, the bid amount sent to the
beneficiary may be incorrect.
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Table 8.5: Analysis Results for Auction

Performance

We compare the gas costs of executing each function in Table 8.6. Overall, we do not observe
significant differences between the execution costs of the contracts.

Operation Solidity Flint Difference Possible Explanation

Deploying 319922 377976 -15% The Solidity optimiser produces
a smaller binary.

Bid 100 Wei 41076 31174 +32%

Withdraw 13210 15984 -17% This due to the overhead of
Flint’s safe Ether transfer oper-
ations.

End auction 23949 37383 -36% This might be due to the over-
head of checking caller capabili-
ties dynamically.

Get Highest Bid 504 660 -24% Similar results.

Get Highest Bidder 530 443 +20% Similar results.

Table 8.6: Gas Costs for Auction

Conclusion

The Vyper and Solidity code is similar. The Flint and Vyper versions are not vulnerable to
integer overflows as all arithmetic operations in those languages throw an exception when
overflows occur by default. In Flint, the withdraw function is more concise and performs the
Ether transfer atomically.

In Flint, we avoided the timestamp dependency, as the language does not surface unsafe
information to the developer. Gas costs are on average higher on Flint, which is due to the
overhead incurred by using safe operators.

8.2 Preventing Vulnerabilities

In this section, we show how TheDAO and the Proof of Weak Hands Coin vulnerabil-
ities could have been prevented using Flint. We also look at how a programmer could bypass
Flint’s security features.

8.2.1 Preventing TheDAO Vulnerability

We show how using Flint for writing TheDAO contract could have helped prevent the loss
of 3.6M+ Ether (880 million dollars). We focus on the vulnerable portion of the code, as
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presented in 2.3.1. The attack relies on a reentrant call, which drains the contract’s Ether
balance.

Solidity

1 contract TheDAO {
2 mapping(address => uint256) public balances;
3
4 function TheDAO() public payable {}
5
6 function deposit(address recipient) public payable {
7 balances[recipient] += msg.value;
8 }
9
10 function withdraw(address recipient) public {
11 uint256 balance = balances[recipient];
12 recipient.call.value(balance)();
13 balances[recipient] = 0;
14 }
15 }

Listing 8.1: Code Reentrancy Vulnerability in Solidity

Flint

1 contract TheDAO {
2 var balances: [Address: Wei] = [:]
3 }
4
5 TheDAO :: (any) {
6 public init() {}
7
8 @payable
9 public mutating func deposit(implicit value: Wei, account: Address) {
10 balances[account].transfer(&value)
11 }
12
13 mutating public func withdraw(account: Address) {
14 send(account, &balances[account])
15 }
16 }

Performing the Attack

We implement an Attacker contract in Solidity, as it requires calling a low-level function
performing an external call without propagating exceptions thrown by the external call. The
Attacker contract can also target the Flint smart contract, as Flint is interoperable with
Solidity.

1 // This contract will be used to attempt an attack on the Flint contract as well.
2 contract Attacker {
3 uint256 public total;
4 function () public payable {
5 total += msg.value;
6 msg.sender.call(bytes4(keccak256("withdraw(address)")), this);
7 }
8 }
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We perform the following sequence of steps in both smart contracts.

1. Alice calls deposit, with arguments 10 Ether and her Ethereum address.

2. Eve, the attacker, calls deposit, with 1 Ether and the Ethereum address of the Attacker
contract as arguments.

3. Eve calls withdraw, with the Attacker contract’s address as an argument.

Results

In Solidity, balances[account] is never set to 0, as the attacker’s code calls back into TheDAO
contract until all gas has been consumed. Funds are sent every time withdraw is called.
In Flint, the transfer operation atomically updates balances[account] and transfers the
funds out of the smart contract. 1 Ether is sent (what the attacker deposited) the first time
withdraw is called, and 0 Ether is sent for the subsequent calls.

Assuming that the balances mapping was empty before the steps were followed, and that
Alice had 10 Ether and exactly enough to pay for gas costs to call deposit, we observe the
differences in the resulting state.

Value Solidity Flint

Attacker’s Ether balance 11 Ether 1 Ether

TheDAO’s Ether balance 0 Ether 10 Ether

Alice’s Ether balance 0 Ether 0 Ether

balances[Alice] 10 Ether 10 Ether

balances[Attacker] 0 Ether 0 Ether

Table 8.7: State After Performing TheDAO Attack

8.2.2 Preventing the Proof of Weak Hands Coin Vulnerability

We show how we can write the Proof of Weak Hands Coin smart contract using Flint’s Asset
types to prevent vulnerabilities.

We reimplement three functions in Flint. The allowance mapping (type address => (address
=> uint256)) in the Solidity contract refers to how much a user has authorised another user
to retrieve from their account. When a user decides to retrieve an allowed amount, the smart
contract checks whether the account the money is being retrieved from has sufficient funds.
If it does not, an exception is thrown. Under this scheme, it is therefore possible for a user
to allow others to retrieve more money than they actually have. We believe this is not a
good scheme, we think allowing an individual to retrieve Ether is an operation which should
always succeed. In our implementation, we implement a Coin struct which implements the
Asset trait, and use its transfer operations. When creating an allowance, we transfer Coin
from the balances mapping to the allowance mapping. This ensures the total supply of Coin
remains does not change when allocating Coins to others. However, users might want to share
an allocation among a group of people: even though a user might only have 3 Ether, they
could allow four users to each collect 1 Ether. Then, an exception would be thrown when
the fourth user attempts to perform the retrieval. This behaviour can still be achieved our
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implementation, by modifying the type of allowances to [Address: [[Address]: Coin]].
This would allow users to allocate an amount of Ether to a group of users.

Retrieving from an allowance. We implement the transferFrom function, which retrieves
an allowance and calls transferTokens. If the caller attempts to retrieve a larger amount
than what allocation permits, an exception is thrown. In Flint, we use the Coin initialiser
which takes an integer value, in order to retrieve a subset of the allowance. The allowance
dictionary is updated in the same operation. We pass the retrieved Coin by reference to
transferTokens (Assets cannot be passed by value).

Solidity

1 function transferFrom(address _from, address _to, uint256 _value) public {
2 var _allowance = allowance[_from][msg.sender];
3 if (_allowance < _value)
4 revert();
5 allowance[_from][msg.sender] = _allowance - _value;
6 transferTokens(_from, _to, _value);
7 }

Flint

1 Coin :: caller <- (any) {
2 public mutating func transferFrom(from: Address, to: Address, value: Int) {
3 var allowance = Coin(&allowance[from][to], value)
4 transferTokens(from, to, &allowance)
5 }
6 }

Transferring tokens. When calling transferTokens with the contract’s address as the from
address, the contract calls sell. We focus on this function as it presented a vulnerability in
the Solidity contract. As discussed above, the initial check which verifies whether the from
account has enough funds to perform the transfer is not needed. When creating an allowance,
the Wei is transferred from balanceOfOld to allowances.

Solidity

1 function transferTokens(address _from, address _to, uint256 _value) internal {
2 if (balanceOfOld[_from] < _value)
3 revert();
4 if (_to == address(this)) {
5 sell(_value);
6 } else {
7 // Omitted, as the code was not vulnerable.
8 }
9 }

Flint

1 mutating func transferTokens(from: Address, to: Address, value: inout Coin) {
2 if (to == contractAddress()) {
3 sell(&value)
4 } else {
5 // Omitted, as the Solidity code was not vulnerable.
6 }
7 }

Listing 8.2: transferFrom, in Flint
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Selling coins for Ether. We use a user-defined initialiser of Wei which converts a Coin to
Wei, and send it using send. Line 5 of the Solidity contract is vulnerable, as it allows for
integer overflow. Updating the balanceOfOld entry is not needed in Flint, as the Coin which
we are sending had already been removed when creating the allocation.

1 function sell(uint256 amount) internal {
2 var numEthers = getEtherForTokens(amount);
3 // remove tokens
4 totalSupply -= amount;
5 balanceOfOld[msg.sender] -= amount;
6
7 // Send Ether.
8 }

Listing 8.3: sell, in Solidity

1 Coin :: caller <- (any) {
2 mutating func sell(amount: inout Coin) {
3 var value: Ether = getEtherForTokens(coin.getRawValue())
4 // remove tokens
5 totalSupply -= amount.getRawValue()
6
7 // No need to remove from ’balanceOfOld’, as the Coin was transferred to
8 // the ’allowances’ mapping.
9
10 send(caller, &value)
11 }
12 }

Listing 8.4: sell, in Flint

8.2.3 Bypassing Flint’s Safety Features

Caller Capabilities

Flint’s caller capability feature can be bypassed entirely by declaring all functions in a caller
capability block protected by the any caller capability. However, as Flint requires users to
specify which caller capabilities are needed to call a function, we argue this safety mechanism
cannot be bypassed accidentally.

Asset Types

It is still possible to represent currency as integers in Flint, hence ignoring the safe transfer
operations we provide, as shown in Listing 8.5. As the only way for a contract to receive
Ether is through @payable functions, an explicit conversion from Wei to Int must still occur.
However, the compiler would still produce a warning as the asset is not transferred in the
function body’s scope.

1 contract Wallet {
2 var balance: Int = 0
3 }
4
5 Wallet :: (any) {
6 @payable
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7 mutating public func deposit(implicit value: inout Wei) {
8 balance += value.getRawValue()
9 }
10 }

Listing 8.5: Bypassing Asset Types

Creating, destroying, and duplicated Assets is still possible by using privileged operations
such as the unsafe Wei initialiser which constructs a Wei from an integer.

Although warnings can be ignored, we think bypassing Flint’s safe transfer operations for
currency cannot be accidental.

Safe Arithmetic Operations

Flint provides the &+, &-, and &* operators which do not cause exceptions when overflows
occur. These operators should be rarely used, and can be easily spotted by readers of a smart
contract.

8.3 Community Feedback

Flint was made open source in April 2018. Since then, we have presented Flint at a program-
ming languages conference, and were honoured to be awarded a prize. We also received great
feedback from the Ethereum Community, and presented Flint at the Imperial Blockchain
Forum.

8.3.1 Publications and Awards

We presented Flint at the International Conference on the Art, Science, and Engineering
of Programming in Nice, France, and published Writing Safe Smart Contracts in Flint [25].
The feedback was very positive, and Flint won the First Prize in the Undergraduate track of
the ACM Student Research Competition, and was selected to participate in the ACM Grand
Finals (Figure 8.1).

(a) Presenting Flint (b) Imperial College News

Figure 8.1: Flint at <Programming> 2018
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8.3.2 Ethereum Community

The feedback from the online community was very positive. We published an article, Flint:
A New Language for Safe Smart Contracts on Ethereum [26], which accumulated over a
thousand “claps” on the web platform Medium. Flint has also been discussed about on
Twitter, Reddit, and in email newsletters. The Flint GitHub repository [24] has over 140
“stars” and is among the top 30 GitHub projects about smart contract programming.

We made the Flint project open source in April 2018, under the MIT copyright license. Since
then, its safety-focused features and ease of use were praised by the Ethereum community.
Websites such as DApps Weekly [56] described Flint as being “on its way to filling a sorely
needed gap in the developer tooling space”. Reddit user Chugwig stated: “I haven’t been a
big fan of the Solidity alternatives [...], this is the first one to really catch my interest.”

The Ethereum Foundation (the original developers of Ethereum) have awarded a ten thousand
dollar grant for us to pursue the development of Flint1.

Ethereum developers have also started experimenting with programming in Flint. Nick Do-
iron published an article, Modeling a mudaraba smart contract [27], in which he explains how
he implemented a mudaraba, a type of contract in islamic finance, in Flint. He followed
the exact sequence of steps Flint invites him to follow: declaring state, then creating caller
capability blocks, and finally defining functions.

We were also honoured to present Flint at the Imperial Blockchain Forum alongside blockchain
experts (Figure 8.2).

(a) Imperial Blockchain Forum Poster (b) Presenting Flint in Huxley Building

Figure 8.2: Imperial Blockchain Forum, June 2018

8.4 Conclusion

Flint makes it easy to write smart contracts which are are safe by design. We did not simply
port the features of other programming languages, such as unbounded loops, as they were
not always a good fit for the Ethereum programming model. Instead, we have focused on

1https://blog.ethereum.org/2018/05/02/announcing-may-2018-cohort-ef-grants/
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novel features which allowed writing safe, concise programs. Our additional safety mecha-
nisms prevent common vulnerabilities of Solidity programs, while delivering similar or better
performance1. In addition, our extensible language design allows us to introduce new safety
features in the next version of Flint.

1Apart from iterating over large arrays, which we can address at a later stage.
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Conclusion

The emergence of the Internet services has shaped new ways for us to connect and share. We
trust that most of the services we use will behave in the way we expect them to. The Ethereum
platform seeks to eliminate the need for trust, by executing services without the need for a
central authority. It introduces a new programming model which presents challenges linked
to its very nature: users trust the code, not the developer. The code of a smart contract
cannot be changed once deployed. Hence the developer must be certain of the correctness
of the program’s behaviour. However, in many cases, unintentional bugs in smart contracts
have led to significant currency losses.

Modern programming languages for traditional computer architectures leverage years of re-
search to prevent the introduction of accidental bugs and optimise runtime performance.
Java does not allow direct manipulation of memory and uses a bytecode verifier to prevent
harmful operations. Rust uses ownership types to efficiently free memory without the need
for a garbage collector. Pony uses reference capabilities to prevent data races in concurrent
programs.

With Flint, we followed this trend by identifying the challenges specific to developing pro-
grams for Ethereum, and designed a programming language tailored for writing smart con-
tracts. We focused on providing a safe development experience while maintaining ease of
use. In addition to providing intuitive semantics, such as the prevention of implicit integer
overflows, we have designed novel security features. To protect attackers from performing
unauthorised operations on smart contracts, we use Flint’s caller capabilities to systematically
require the programmer to specify which parties can call each of the contract’s functions. We
verify the validity of internal function calls at compile-time, allowing us to omit expensive
checks at runtime. To help developers safely transfer currency in smart contracts, we imple-
ment Flint’s Asset types. These prevent the accidental creation and destruction of currency,
and allow the use of safe atomic transfer operations. This results in smart contracts main-
taining a consistent state at all times. To prevent spurious mutations of the state, we make
the distinction between mutating and nonmutating functions, and require the programmer
to specifically indicate mutability in function signatures. This also helps readers to identify
them quickly.

In our evaluation, we have shown that Flint programs are significantly safer than programs
written in Solidity, Ethereum’s most popular language, while maintaining similar or better
performance. Flint has also received very positive feedback from the programming languages
and Ethereum communities. We hope to see more work on Flint and its toolchain, in partic-
ular to support formal verification and easy deployment of Flint programs.
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Third-Party Libraries

We used the following third-party libraries when using the Flint compiler.

CryptoSwift [57], by Marcin Krzyzanowski, to compute Keccak-256 hashes in Swift.

Commander [58], by Kyle Fuller under the BSD license, to parse command line arguments.

Lite [52], by Harlan Haskins under the MIT License, as a test runner tool.

FileCheck [54], by Robert Widmann under the MIT License, as a Swift version of LLVM’s [53]
FileCheck tool.
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Appendix A

The Flint Grammar

The grammar is specified in Backus-Naur form. Elements in square brackets are tokens, and
elements in parentheses are optional.

// Top-level declarations

top-level-declarations -> top-level-declaration (top-level-declarations)
top-level-declaration -> contract-declaration | contract-behavior-declaration | struct-

declaration

// Contract declaration

contract-declaration -> [contract] identifier [{] (variable-declarations) [}]

// Variable declarations

variable-declarations -> variable-declaration (variable-declarations)
variable-declaration -> [var] identifier type-annotation ([=] expression)

// Type annotations

type-annotation -> [:] type

// Types

type -> identifier (generic-argument-clause) | [[] type []] | type [[] numeric-literal []]
| [[] type [:] type []]

generic-argument-clause -> [<] generic-argument-list [>]
generic-argument-list -> type | type [,] generic-argument-list

// Struct declaration

struct-declaration -> [struct] identifier [{] (struct-members) [}]
struct-members -> struct-member (struct-members)
struct-member -> variable-declaration | function-declaration | initializer-declaration

// Contract behavior declaration

contract-behavior-declaration -> identifier [::] (caller-capability-binding) caller-
capability-group (contract-behavior-members)

contract-behavior-members -> contract-behavior-member (contract-behavior-members)
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contract-behavior-member -> function-declaration | initializer-declaration

// Caller capability group

caller-capability-group -> [(] caller-capability-list [)]
caller-capability-list -> caller-capability-identifier | caller-capability-identifier [,]

caller-capability-list
caller-capability-identifier -> identifier
caller-capability-binding -> identifier [<-]

// Identifier

identifier -> [a-zA-Z] . [a-zA-Z0-9$]*

// Function and initializer declarations

initializer-declaration -> initializer-head parameter-clause code-block
function-declaration -> function-head identifier parameter-clause (function-result) code-

block

initializer-head -> (declaration-attributes) (declaration-modifiers) [init]
function-head -> (declaration-attributes) (declaration-modifiers) [func]

declaration-modifier -> [public] | [mutating]
declaration-modifiers -> declaration-modifier (declaration-modifiers)

function-result -> [->] type

parameter-clause -> [(] [)] | [(] parameter-list [)]
parameter-list -> parameter | parameter [,] parameter-list
parameter -> identifier type-annotation

declaration-attribute -> [@] . [a-zA-Z]*
declaration-attributes -> declaration-attribute (declaration-attributes)

// Code block

code-block -> [{] statements [}]

// Statements

statements -> statement (statements)
statement -> expression
statement -> [return] (expression)
statement -> if-statement

// Expression

expression -> identifier | in-out-expression | binary-expression | function-call | literal
| bracketed-expression | subscript-expression

in-out-expression -> [&] expression
binary-expression -> expression binary-operator expression
bracketed-expression -> [(] expression [)]
subscript-expression -> identifier [[] expression []]

// Function Call
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function-call -> identifier function-call-argument-clause
function-call-argument-clause -> [(] [)] | [(] function-call-argument-list [)]
function-call-argument-list -> expression | expression [,] function-call-argument-list

// Binary Operators

binary-operator -> [+] | [-] | [=] | [.]

// Branching

if-statement -> [if] expression code-block (else-clause)
else-clause -> [else] code-block

// Literal

literal -> numeric-literal | string-literal | boolean-literal

numeric-literal -> decimal-literal
decimal-literal -> [0-9]+ | [0-9]+ [.] [0-9]+

array-literal -> [[] array-literal-elements []]
array-literal-elements -> expression ([,] array-literal-elements)
dictionary-literal -> [[] dictionary-literal-elements []]
dictionary-literal-elements -> expression [:] expression ([,] dictionary-literal-elements)

string-literal -> ["] [a-zA-Z0-9]* ["]
boolean-literal -> [true] | [false]

Listing A.1: The Flint Grammar

We thank GitHub user vietlq for finding typos in the grammar.
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Appendix B

Installing the Flint Compiler and
Running Flint Smart Contracts

B.1 Installing Flint

This installation guide is available on https://docs.flintlang.org/installation.

B.1.1 Docker

The Flint compiler and its dependencies can be installed using Docker:

docker pull franklinsch/flint
docker run -i -t franklinsch/flint

Example smart contracts are available in /flint/examples/valid/.

B.1.2 Binary Packages and Building from Source

Dependencies

Swift

The Flint compiler is written in Swift, and requires the Swift compiler to be installed, either
by:

• Mac only: Installing Xcode (recommended)

• Mac/Linux: Using swiftenv

1. Install swiftenv: brew install kylef/formulae/swiftenv

2. Run swiftenv install 4.1

solc

Flint also requires the Solidity compiler to be installed:

Mac
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brew update
brew upgrade
brew tap ethereum/ethereum
brew install solidity

Linux

sudo add-apt-repository ppa:ethereum/ethereum
sudo apt-get update
sudo apt-get install solc

Binary Packages

Flint is compatible on macOS and Linux platforms, and can be installed by downloading a
built binary directly. The latest releases are available at https://github.com/franklinsch/
flint/releases.

Building From Source

The best way to start contributing to the Flint compiler, flintc, is to clone the GitHub
repository and build the project from source. Once you have the swift command line tool
installed, you can build flintc.

git clone https://github.com/franklinsch/flint.git
cd flint
make

The built binary is available at .build/debug/flintc. Add flintc to your PATH using:

export PATH=$PATH:.build/debug/flintc

Using Xcode

If you have Xcode on your Mac, you can use Xcode to contribute to the compiler. You can
generate an Xcode project using:

swift package generate-xcodeproj
open flintc.xcodeproj

B.1.3 Vim Syntax Highlighting

Syntax highlighting for Flint source files can be obtained by running:

ditto utils/vim /.vim

B.2 Compiling and Running Flint Smart Contracts

Flint compiles to EVM bytecode, which can be deployed to the Ethereum blockchain using a
standard client, or Truffle. For testing purposes, the recommended way of running a contract
is by using the Remix IDE.
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B.2. Compiling and Running Flint Smart Contracts

B.2.1 Using Remix

Remix is an online IDE for testing Solidity smart contracts. Flint contracts can also be tested
in Remix, by compiling Flint to Solidity.

In this example, we are going to compile and run the Counter contract, available to download
on https://github.com/franklinsch/flint/blob/master/examples/valid/counter.flint.

Compiling

A Flint source file named counter.flint containing a contract Counter can be compiled to a
Solidity file using:

flintc main.flint --emit-ir

You can view the generate code, embedded as a Solidity program:

cat bin/main/Counter.sol

Example smart contracts are available in the repository, under examples/valid.

B.2.2 Interacting with the Contract in Remix

To run the generated Solidity file on Remix:

1. Copy the contents of bin/main/Counter.sol and paste the code in Remix.

2. Press the red Create button under the Run tab in the right sidebar.

3. You should now see your deployed contract below. Click on the copy button on the
right of Counter to copy the contract’s address.

4. Select from the dropdown right above the Create button and select _InterfaceMyCon-
tract.

5. Paste in the contract’s address in the “Load contract from Address” field, and press the
At Address button.

6. You should now see the public functions declared by your contract (getValue, set, and
increment). Red buttons indicate the functions are mutating, whereas blue indicated
non-mutating.

7. You should now be able to call the contract’s functions.

121

https://github.com/franklinsch/flint/blob/master/examples/valid/counter.flint


Appendix C

Flint GitHub Repository and Flint
Language Guide

C.1 GitHub

Flint’s GitHub repository is available on https://github.com/franklinsch/flint. The project
is released under the MIT license, and contains the source code of the compiler, automated
tests, and documentation.

With over 560 commits, the development of the compiler started in late December 2017. A
contribution graph is presented in Figure C.1.

C.1.1 Questions and Feature Suggestions

We use GitHub’s Issues system to track work on the Flint compiler. Any user can ask
questions and suggest features. We have closed about 70 issues, and about 40 are still open
and track future work. The addition of new features is performed through Pull Requests,
and have to be approved by the owner of the GitHub repository (me). We have closed 114
since the inception of the project.

Figure C.1: Flint contributions, since December 2018
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C.2. Flint Language Guide

Figure C.2: Original Flint Asset proposal

C.1.2 Proposals

Flint Improvement Proposals (FIPs) track the design and implementation of larger new
features for Flint or the Flint compiler. We follow the same model as the Swift Evolution
process1. We show the original proposal for the Asset type in Figure C.2.

C.2 Flint Language Guide

The Flint Language Guide [59] provides a instructions to get started with Flint programming,
and an overview of its features, as shown in Figure C.3.

1https://github.com/apple/swift-evolution
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Figure C.3: Original Flint Asset proposal

124



Appendix D

Flint Package Manager Smart
Contract

1 // The Flint Package Manager allows developers to share and use Flint contracts.
2 // This smart contract records package information, including hashes of the source
3 // code and interface, and security warnings produced by the Flint compiler.
4 contract PackageManager {
5 var admin: Address
6 var packages: [String: Package]
7 }
8
9 // Public API
10 PackageManager :: caller <- (any) {
11 public mutating func createPackage(name: String, version: Int, hash: String) {
12 assert(!packageExists(name))
13 packages[name] = Package(name, owner, version, hash)
14 }
15
16 public mutating func updatePackage(packageName: String, newVersion: Int, newHash: String)

{
17 assert(!packageExists(packageName))
18 assert(packages[packageName].isOwnedBy(caller))
19 assert(newVersion > packages[packageName].version)
20
21 packages[packageName].version = newVersion
22 packages[packageName].hash = newHash
23 }
24
25 public mutating func addSecurityWarning(packageName: String, warning: String) {
26 packages[packageName].addSecurityWarning(warning)
27 }
28
29 public func getPackageHash(name: String) -> String {
30 return packages[name].hash
31 }
32
33 public func getPackageVersion(name: String) -> Int {
34 return packages[name].version
35 }
36
37 public func getPackageNumSecurityWarnings(name: String) -> Int {
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38 return packages[name].securityInformation.numWarnings
39 }
40
41 public func getPackageSecurityWarnings(name: String, index: Int) -> String {
42 return packages[name].getSecurityWarning(index)
43 }
44
45 func packageExists(name: String) -> Bool {
46 return packages[name].name != ""
47 }
48 }
49
50 // API for the PackageManager’s administrator.
51 PackageManager :: (admin) {
52 public mutating func deletePackage(name: String) {
53 // Reset the fields
54 packages.removeEntry(name)
55 }
56 }
57
58 // Represents a Flint package.
59 struct Package {
60 // Name of the package.
61 var name: String
62
63 // Creator and owner of the package.
64 var owner: Address
65
66 // Latest version of the package.
67 var version: Int
68
69 // Hash of the package’s source code.
70 var hash: String
71
72 // Hash of the package’s interface.
73 var interfaceHash: String
74
75 // Security information relating to this package.
76 var securityInformation: SecurityInformation
77
78 // == Functions ==
79
80 func isOwnedBy(address: Address) -> Bool {
81 return owner == address
82 }
83
84 mutating func addSecurityWarning(warning: String) {
85 securityInformation.addWarning(warning)
86 }
87
88 func getSecurityWarning(index: Int) -> String {
89 return securityInformation.getWarning(index)
90 }
91 }
92
93 // Encapsulates security information about a package.
94 struct SecurityInformation {
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95 var warnings: [String]
96
97 mutating func addWarning(warning: String) {
98 warnings.append(warning)
99 }

100
101 func getWarning(index: Int) -> String {
102 return warnings[index]
103 }
104 }

Listing D.1: Package Manager Prototype
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Proposal to Rename Caller
Capabilities
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Proposal: FIP-0002
Author: Franklin Schrans
Review Manager: TBD
Status: Awaiting review
Issue label: not yet

The term "caller capabilities" has been used to refer to the mechanism which ensures functions of a Flint
contract can only be called by a specific set of users. In particular, we say the caller of a function must have the
correct "caller capability" in order to be able to call a function. This term might be however confusing, as the
term "capability" is used differently in other languages which feature capabilities. Capabilities are usually
transferable, and Flint caller capabilities are not. We propose renaming caller capabilities to caller identities.

Programming languages such as Pony use the term "reference capabilities" to express access rights on
objects. In Flint, caller capabilities express access rights to functions. However, the term "capability" usually
refers to transferable access rights. This means that if an entity is allowed to access a resource, it should be
able to transfer that right to another entity. Mark Miller et al. describe four security models which make the
distinction between Access Control Lists (ACLs) and different types of capabilities. Flint caller capability would
actually fit more under "Model 1. ACLs as columns". Some definitions regard a capability as an unforgeable
token, i.e., a bit string which when possessed by a user, allows access to a resource.

Flint caller capabilities in fact implement something more similar to Role-Based Access Control (RBAC).
RBAC-based systems restrict certain operations to sets of users, through roles: if a user has the appropriate
role, it is allowed to perform the operation. In Flint, functions can only be called if the user has the appropriate
role.

In the following example, clear(address:)  can only be called by the user which has the Ethereum
address stored in the manager  state property.

Rename the term "caller capabilities"

Introduction

Motivation
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contract Bank {
  var manager: Address
}

Bank :: (manager) {
  public func clear(address: Address) {
    // ...
  }
}

The manager's right to call clear(address:)  is non-transferable, i.e., it cannot be delegated to another
Ethereum user, which might be the expectation when thinking about a capability.

We suggest the term caller identity. It clearly portrays that the determination of whether a caller is allowed to
call a function is based on an identity check. Naturally, identities cannot be transferred, and this term better
describes Flint's mechanism.

We'll say a caller is allowed to call a function if it has the appropriate caller identity, or simply the appropriate
identity, rather than capability.

The error message related to invalid function calls due to incompatible caller identities would be updated:

Proposed solution

Chapter E. Proposal to Rename Caller Capabilities

130



Bank :: (any) {
  func foo() {
    // Error: Function bar cannot be called by any user
    bar()
  }
}

Bank :: (manager) {
  func bar() {
  }
}

Bank :: (manager, admin) {
  func baz() {
    // Error: Function bar cannot be called by all users in (manager, admin)
    bar()
  }
}

Bank :: (admin) {
  func qux() {
    // Error: Function bar cannot be called by admin
    bar()
  }
}

The term role was also considered instead of identity. I personally prefer "caller identity" than "caller role", and
"requiring to have a specific identity to call a function" than "requiring to have a specific role". I am open to
discussion for using "role" instead.

Thank you Mark Miller for bringing up the incorrect use of the term, and for suggesting Flint's mechanism is
closer to RBAC-based systems.

Alternatives considered

Thank you
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Appendix F

Example Intermediate Representation
File

1 pragma solidity ^0.4.21;
2
3 contract Counter {
4
5 constructor() public {
6 assembly {
7 // Memory address 0x40 holds the next available memory location.
8 mstore(0x40, 0x60)
9
10 init()
11 function init() {
12
13 sstore(add(0, 0), 0)
14 }
15 function Flint$Global_send_Address_$inoutWei(_address, _value, _value$isMem) {
16 let _w := flint$allocateMemory(32)
17 Wei_init_$inoutWei(_w, 1, _value, _value$isMem)
18 flint$send(Wei_getRawValue(_w, 1), _address)
19 }
20
21 function Flint$Global_fatalError() {
22 flint$fatalError()
23 }
24
25 function Flint$Global_assert_Bool(_condition) {
26 switch eq(_condition, 0)
27 case 1 {
28 Flint$Global_fatalError()
29 }
30
31 }
32
33 function Wei_init_Int(_flintSelf, _flintSelf$isMem, _unsafeRawValue) {
34 flint$store(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem), _unsafeRawValue,

_flintSelf$isMem)
35 }
36
37 function Wei_init_$inoutWei_Int(_flintSelf, _flintSelf$isMem, _source, _source$isMem,
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_amount) {
38 switch lt(Wei_getRawValue(_source, _source$isMem), _amount)
39 case 1 {
40 Flint$Global_fatalError()
41 }
42
43 flint$store(flint$computeOffset(_source, 0, _source$isMem), flint$sub(flint$load(

flint$computeOffset(_source, 0, _source$isMem), _source$isMem), _amount),
_source$isMem)

44 flint$store(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem), _amount,
_flintSelf$isMem)

45 }
46
47 function Wei_init_$inoutWei(_flintSelf, _flintSelf$isMem, _source, _source$isMem) {
48 let _value := Wei_getRawValue(_source, _source$isMem)
49 flint$store(flint$computeOffset(_source, 0, _source$isMem), flint$sub(flint$load(

flint$computeOffset(_source, 0, _source$isMem), _source$isMem), _value),
_source$isMem)

50 flint$store(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem), _value,
_flintSelf$isMem)

51 }
52
53 function Wei_transfer_$inoutWei_Int(_flintSelf, _flintSelf$isMem, _source,

_source$isMem, _amount) {
54 switch lt(Wei_getRawValue(_source, _source$isMem), _amount)
55 case 1 {
56 Flint$Global_fatalError()
57 }
58
59 flint$store(flint$computeOffset(_source, 0, _source$isMem), flint$sub(flint$load(

flint$computeOffset(_source, 0, _source$isMem), _source$isMem), _amount),
_source$isMem)

60 flint$store(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem), flint$add(
flint$load(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem),
_flintSelf$isMem), _amount), _flintSelf$isMem)

61 }
62
63 function Wei_transfer_$inoutWei(_flintSelf, _flintSelf$isMem, _source, _source$isMem)

{
64 Wei_transfer_$inoutWei_Int(_flintSelf, _flintSelf$isMem, _source, _source$isMem,

Wei_getRawValue(_source, _source$isMem))
65 }
66
67 function Wei_getRawValue(_flintSelf, _flintSelf$isMem) -> ret {
68 ret := flint$load(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem),

_flintSelf$isMem)
69 }
70 function flint$selector() -> ret {
71 ret := div(calldataload(0), 0

x100000000000000000000000000000000000000000000000000000000)
72 }
73
74 function flint$decodeAsAddress(offset) -> ret {
75 ret := flint$decodeAsUInt(offset)
76 }
77
78 function flint$decodeAsUInt(offset) -> ret {
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79 ret := calldataload(add(4, mul(offset, 0x20)))
80 }
81
82 function flint$store(ptr, val, mem) {
83 switch iszero(mem)
84 case 0 {
85 mstore(ptr, val)
86 }
87 default {
88 sstore(ptr, val)
89 }
90 }
91
92 function flint$load(ptr, mem) -> ret {
93 switch iszero(mem)
94 case 0 {
95 ret := mload(ptr)
96 }
97 default {
98 ret := sload(ptr)
99 }

100 }
101
102 function flint$computeOffset(base, offset, mem) -> ret {
103 switch iszero(mem)
104 case 0 {
105 ret := add(base, mul(offset, 32))
106 }
107 default {
108 ret := add(base, offset)
109 }
110 }
111
112 function flint$allocateMemory(size) -> ret {
113 ret := mload(0x40)
114 mstore(0x40, add(ret, size))
115 }
116
117 function flint$isValidCallerCapability(_address) -> ret {
118 ret := eq(_address, caller())
119 }
120
121 function flint$isCallerCapabilityInArray(arrayOffset) -> ret {
122 let size := sload(arrayOffset)
123 let found := 0
124 let _caller := caller()
125 let arrayStart := flint$add(arrayOffset, 1)
126 for { let i := 0 } and(lt(i, size), iszero(found)) { i := add(i, 1) } {
127 if eq(sload(flint$storageArrayOffset(arrayOffset, i)), _caller) {
128 found := 1
129 }
130 }
131 ret := found
132 }
133
134 function flint$return32Bytes(v) {
135 mstore(0, v)
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136 return(0, 0x20)
137 }
138
139 function flint$isInvalidSubscriptExpression(index, arraySize) -> ret {
140 ret := or(iszero(arraySize), or(lt(index, 0), gt(index, flint$sub(arraySize, 1))))
141 }
142
143 function flint$storageArrayOffset(arrayOffset, index) -> ret {
144 let arraySize := sload(arrayOffset)
145
146 switch eq(arraySize, index)
147 case 0 {
148 if flint$isInvalidSubscriptExpression(index, arraySize) { revert(0, 0) }
149 }
150 default {
151 sstore(arrayOffset, flint$add(arraySize, 1))
152 }
153
154 ret := flint$storageDictionaryOffsetForKey(arrayOffset, index)
155 }
156
157 function flint$storageFixedSizeArrayOffset(arrayOffset, index, arraySize) -> ret {
158 if flint$isInvalidSubscriptExpression(index, arraySize) { revert(0, 0) }
159 ret := flint$add(arrayOffset, index)
160 }
161
162 function flint$storageDictionaryOffsetForKey(dictionaryOffset, key) -> ret {
163 mstore(0, key)
164 mstore(32, dictionaryOffset)
165 ret := sha3(0, 64)
166 }
167
168 function flint$send(_value, _address) {
169 let ret := call(gas(), _address, _value, 0, 0, 0, 0)
170
171 if iszero(ret) {
172 revert(0, 0)
173 }
174 }
175
176 function flint$fatalError() {
177 revert(0, 0)
178 }
179
180 function flint$add(a, b) -> ret {
181 let c := add(a, b)
182
183 if lt(c, a) { revert(0, 0) }
184 ret := c
185 }
186
187 function flint$sub(a, b) -> ret {
188 if gt(b, a) { revert(0, 0) }
189
190 ret := sub(a, b)
191 }
192
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193 function flint$mul(a, b) -> ret {
194 switch iszero(a)
195 case 1 {
196 ret := 0
197 }
198 default {
199 let c := mul(a, b)
200 if iszero(eq(div(c, a), b)) { revert(0, 0) }
201 ret := c
202 }
203 }
204
205 function flint$div(a, b) -> ret {
206 if eq(b, 0) { revert(0, 0) }
207 ret := div(a, b)
208 }
209 }
210 }
211
212 function () public payable {
213 assembly {
214 // Memory address 0x40 holds the next available memory location.
215 mstore(0x40, 0x60)
216
217 switch flint$selector()
218
219 case 0x20965255 /* getValue() */ {
220
221 flint$return32Bytes(getValue())
222 }
223
224 case 0xd09de08a /* increment() */ {
225
226 increment()
227 }
228
229 case 0x60fe47b1 /* set(uint256) */ {
230
231 set(flint$decodeAsUInt(0))
232 }
233
234 default {
235 revert(0, 0)
236 }
237
238 // User-defined functions
239
240 function getValue() -> ret {
241 ret := sload(add(0, 0))
242 }
243
244 function increment() {
245 sstore(add(0, 0), flint$add(sload(add(0, 0)), 1))
246 }
247
248 function set(_value) {
249 sstore(add(0, 0), _value)
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250 }
251
252 // Struct functions
253
254 function Flint$Global_send_Address_$inoutWei(_address, _value, _value$isMem) {
255 let _w := flint$allocateMemory(32)
256 Wei_init_$inoutWei(_w, 1, _value, _value$isMem)
257 flint$send(Wei_getRawValue(_w, 1), _address)
258 }
259
260 function Flint$Global_fatalError() {
261 flint$fatalError()
262 }
263
264 function Flint$Global_assert_Bool(_condition) {
265 switch eq(_condition, 0)
266 case 1 {
267 Flint$Global_fatalError()
268 }
269
270 }
271
272 function Wei_init_Int(_flintSelf, _flintSelf$isMem, _unsafeRawValue) {
273 flint$store(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem), _unsafeRawValue,

_flintSelf$isMem)
274 }
275
276 function Wei_init_$inoutWei_Int(_flintSelf, _flintSelf$isMem, _source, _source$isMem,

_amount) {
277 switch lt(Wei_getRawValue(_source, _source$isMem), _amount)
278 case 1 {
279 Flint$Global_fatalError()
280 }
281
282 flint$store(flint$computeOffset(_source, 0, _source$isMem), flint$sub(flint$load(

flint$computeOffset(_source, 0, _source$isMem), _source$isMem), _amount),
_source$isMem)

283 flint$store(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem), _amount,
_flintSelf$isMem)

284 }
285
286 function Wei_init_$inoutWei(_flintSelf, _flintSelf$isMem, _source, _source$isMem) {
287 let _value := Wei_getRawValue(_source, _source$isMem)
288 flint$store(flint$computeOffset(_source, 0, _source$isMem), flint$sub(flint$load(

flint$computeOffset(_source, 0, _source$isMem), _source$isMem), _value),
_source$isMem)

289 flint$store(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem), _value,
_flintSelf$isMem)

290 }
291
292 function Wei_transfer_$inoutWei_Int(_flintSelf, _flintSelf$isMem, _source,

_source$isMem, _amount) {
293 switch lt(Wei_getRawValue(_source, _source$isMem), _amount)
294 case 1 {
295 Flint$Global_fatalError()
296 }
297
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298 flint$store(flint$computeOffset(_source, 0, _source$isMem), flint$sub(flint$load(
flint$computeOffset(_source, 0, _source$isMem), _source$isMem), _amount),
_source$isMem)

299 flint$store(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem), flint$add(
flint$load(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem),
_flintSelf$isMem), _amount), _flintSelf$isMem)

300 }
301
302 function Wei_transfer_$inoutWei(_flintSelf, _flintSelf$isMem, _source, _source$isMem)

{
303 Wei_transfer_$inoutWei_Int(_flintSelf, _flintSelf$isMem, _source, _source$isMem,

Wei_getRawValue(_source, _source$isMem))
304 }
305
306 function Wei_getRawValue(_flintSelf, _flintSelf$isMem) -> ret {
307 ret := flint$load(flint$computeOffset(_flintSelf, 0, _flintSelf$isMem),

_flintSelf$isMem)
308 }
309
310 // Flint runtime
311
312 function flint$selector() -> ret {
313 ret := div(calldataload(0), 0

x100000000000000000000000000000000000000000000000000000000)
314 }
315
316 function flint$decodeAsAddress(offset) -> ret {
317 ret := flint$decodeAsUInt(offset)
318 }
319
320 function flint$decodeAsUInt(offset) -> ret {
321 ret := calldataload(add(4, mul(offset, 0x20)))
322 }
323
324 function flint$store(ptr, val, mem) {
325 switch iszero(mem)
326 case 0 {
327 mstore(ptr, val)
328 }
329 default {
330 sstore(ptr, val)
331 }
332 }
333
334 function flint$load(ptr, mem) -> ret {
335 switch iszero(mem)
336 case 0 {
337 ret := mload(ptr)
338 }
339 default {
340 ret := sload(ptr)
341 }
342 }
343
344 function flint$computeOffset(base, offset, mem) -> ret {
345 switch iszero(mem)
346 case 0 {
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347 ret := add(base, mul(offset, 32))
348 }
349 default {
350 ret := add(base, offset)
351 }
352 }
353
354 function flint$allocateMemory(size) -> ret {
355 ret := mload(0x40)
356 mstore(0x40, add(ret, size))
357 }
358
359 function flint$isValidCallerCapability(_address) -> ret {
360 ret := eq(_address, caller())
361 }
362
363 function flint$isCallerCapabilityInArray(arrayOffset) -> ret {
364 let size := sload(arrayOffset)
365 let found := 0
366 let _caller := caller()
367 let arrayStart := flint$add(arrayOffset, 1)
368 for { let i := 0 } and(lt(i, size), iszero(found)) { i := add(i, 1) } {
369 if eq(sload(flint$storageArrayOffset(arrayOffset, i)), _caller) {
370 found := 1
371 }
372 }
373 ret := found
374 }
375
376 function flint$return32Bytes(v) {
377 mstore(0, v)
378 return(0, 0x20)
379 }
380
381 function flint$isInvalidSubscriptExpression(index, arraySize) -> ret {
382 ret := or(iszero(arraySize), or(lt(index, 0), gt(index, flint$sub(arraySize, 1))))
383 }
384
385 function flint$storageArrayOffset(arrayOffset, index) -> ret {
386 let arraySize := sload(arrayOffset)
387
388 switch eq(arraySize, index)
389 case 0 {
390 if flint$isInvalidSubscriptExpression(index, arraySize) { revert(0, 0) }
391 }
392 default {
393 sstore(arrayOffset, flint$add(arraySize, 1))
394 }
395
396 ret := flint$storageDictionaryOffsetForKey(arrayOffset, index)
397 }
398
399 function flint$storageFixedSizeArrayOffset(arrayOffset, index, arraySize) -> ret {
400 if flint$isInvalidSubscriptExpression(index, arraySize) { revert(0, 0) }
401 ret := flint$add(arrayOffset, index)
402 }
403
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404 function flint$storageDictionaryOffsetForKey(dictionaryOffset, key) -> ret {
405 mstore(0, key)
406 mstore(32, dictionaryOffset)
407 ret := sha3(0, 64)
408 }
409
410 function flint$send(_value, _address) {
411 let ret := call(gas(), _address, _value, 0, 0, 0, 0)
412
413 if iszero(ret) {
414 revert(0, 0)
415 }
416 }
417
418 function flint$fatalError() {
419 revert(0, 0)
420 }
421
422 function flint$add(a, b) -> ret {
423 let c := add(a, b)
424
425 if lt(c, a) { revert(0, 0) }
426 ret := c
427 }
428
429 function flint$sub(a, b) -> ret {
430 if gt(b, a) { revert(0, 0) }
431
432 ret := sub(a, b)
433 }
434
435 function flint$mul(a, b) -> ret {
436 switch iszero(a)
437 case 1 {
438 ret := 0
439 }
440 default {
441 let c := mul(a, b)
442 if iszero(eq(div(c, a), b)) { revert(0, 0) }
443 ret := c
444 }
445 }
446
447 function flint$div(a, b) -> ret {
448 if eq(b, 0) { revert(0, 0) }
449 ret := div(a, b)
450 }
451 }
452 }
453 }
454 interface _InterfaceCounter {
455 function getValue() view external returns (uint256 ret);
456 function increment() external;
457 function set(uint256 _value) external;
458 }
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Appendix G

Full Contracts from Evaluation

G.1 Caller Capabilities

Solidity

1 contract CapsSolidity {
2 address owner;
3 address[] customers;
4 uint256 counter;
5
6 // Modifiers.
7
8 modifier onlyOwner {
9 require(msg.sender == owner);
10 _;
11 }
12
13 modifier anyCustomer {
14 uint numCustomers = customers.length;
15 bool found = false;
16
17 for (uint i = 0; i < numCustomers; i++) {
18 if (customers[i] == msg.sender) { found = true; }
19 }
20
21 require(found);
22 _;
23 }
24
25 function CapsSolidity() { owner = msg.sender; }
26 function addCustomer(address customer) { customers.push(customer); }
27
28 function anyUser() public constant returns(uint256) { return 1; }
29
30 function ownerCall(uint counter) public constant onlyOwner returns(uint256) {
31 return counter + 1;
32 }
33
34 function customerCall(uint counter) public constant anyCustomer returns(uint256) {
35 return counter + 1;
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36 }
37
38 function ownerInternalCalls() public onlyOwner {
39 uint256 x = 0;
40 x += ownerCall(x)
41 // 34 calls hidden: x += customerCall(x)
42 x += ownerCall(x)
43 counter = x;
44 }
45
46 function customerInternalCalls() public anyCustomer {
47 uint256 x = 0;
48 x += ownerCall(x)
49 // 34 calls hidden: x += customerCall(x)
50 x += ownerCall(x)
51 counter = x;
52 }
53 }

Vyper

1 owner: public(address)
2 customers: public(address[50])
3 counter: public(uint256)
4
5 @public
6 @constant
7 def anyUser() -> uint256:
8 return 1
9
10 @private
11 @constant
12 def isCustomer(a: address) -> bool:
13 found: bool = False
14 for c in range(50):
15 if self.customers[c] == a:
16 found = True
17
18 return found
19
20 @public
21 @constant
22 def customerCall(_counter: uint256) -> uint256:
23 assert self.isCustomer(msg.sender)
24 return _counter + 1
25
26 @public
27 @constant
28 def ownerCall(_counter: uint256) -> uint256:
29 assert msg.sender == self.owner
30 return _counter + 1
31
32 @public
33 def ownerInternalCalls():
34 assert msg.sender == self.owner
35 x: uint256 = 0
36 x += self.ownerCall(x)
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37 // 34 calls hidden: x += self.ownerCall(x)
38 x += self.ownerCall(x)
39 self.counter = x
40
41 @public
42 def customerInternalCalls():
43 assert self.isCustomer(msg.sender)
44 x: uint256 = 0
45 x += self.customerCall(x)
46 // 34 calls hidden: x += customerCall(x)
47 x += self.customerCall(x)
48 self.counter = x

Flint

1 contract Caps {
2 var owner: Address
3 var customers: [Address] = []
4 var numCustomers: Int = 0
5
6 var counter: Int = 0
7 }
8
9 Caps :: owner <- (any) {
10 public init() {
11 self.owner = owner
12 }
13
14 mutating public func addCustomer(customer: Address) {
15 customers[numCustomers] = customer
16 numCustomers += 1
17 }
18
19 public func anyUser() -> Int {
20 return 1
21 }
22 }
23
24 Caps :: (owner) {
25 public func ownerCall(counter: Int) -> Int {
26 return counter + 1
27 }
28
29 public mutating func ownerInternalCalls() {
30 var x: Int = 0
31 x += ownerCall(x)
32 // 34 calls hidden: x += customerCall(x)
33 x += ownerCall(x)
34 self.counter = x
35 }
36 }
37
38 Caps :: (customers) {
39 public func customerCall(counter: Int) -> Int {
40 return counter + 1
41 }
42
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43 public mutating func customerInternalCalls() {
44 var x: Int = 0
45 x += customerCall(x)
46 // 34 calls hidden: x += customerCall(x)
47 x += customerCall(x)
48 self.counter = x
49 }
50 }

G.2 Asset Types and Safe Arithmetic Operation

Solidity

1 contract Bank {
2 address manager;
3 mapping (address => uint) balances;
4 address[] accounts;
5
6 modifier onlyManager {
7 require(msg.sender == manager);
8 _;
9 }
10
11 modifier anyCustomer {
12 uint numCustomers = accounts.length;
13 bool found = false;
14
15 for (uint i = 0; i < numCustomers; i++) {
16 if (accounts[i] == msg.sender) {
17 found = true;
18 }
19 }
20
21 require(found);
22 _;
23 }
24
25 function Bank(address _manager) public {
26 manager = _manager;
27 }
28
29 function register() public {
30 accounts.push(msg.sender);
31 }
32
33 function mint(address account, uint amount) onlyManager public payable {
34 balances[account] += amount;
35 }
36
37 function getBalance() anyCustomer public view returns(uint) {
38 return balances[msg.sender];
39 }
40
41 function transfer(uint amount, address destination) anyCustomer public {
42 require(balances[msg.sender] >= amount);
43 balances[destination] += amount;

144



G.2. Asset Types and Safe Arithmetic Operation

44 balances[msg.sender] -= amount;
45 }
46
47 function deposit() anyCustomer public payable {
48 balances[msg.sender] += msg.value;
49 }
50
51 function withdraw(uint amount) anyCustomer public {
52 require(balances[msg.sender] >= amount);
53 balances[msg.sender] -= amount;
54 msg.sender.transfer(amount);
55 }
56 }

Flint

1 contract Bank {
2 var manager: Address
3 var balances: [Address: Wei] = [:]
4 var accounts: [Address] = []
5 var lastIndex: Int = 0
6 }
7
8 Bank :: account <- (any) {
9 public init(manager: Address) {
10 self.manager = manager
11 }
12
13 public mutating func register() {
14 accounts[lastIndex] = account
15 lastIndex += 1
16 }
17 }
18
19 Bank :: (manager) {
20 public mutating func mint(account: Address, amount: Int) {
21 var w: Wei = Wei(amount)
22 balances[account].transfer(&w)
23 }
24 }
25
26 Bank :: account <- (accounts) {
27 public func getBalance() -> Int {
28 return balances[account].getRawValue()
29 }
30
31 public mutating func transfer(amount: Int, destination: Address) {
32 balances[destination].transfer(&balances[account], amount)
33 }
34
35 @payable
36 public mutating func deposit(implicit value: Wei) {
37 balances[account].transfer(&value)
38 }
39
40 public mutating func withdraw(amount: Int) {
41 // Transfer some Wei from balances[account] into a local variable.
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42 let w: Wei = Wei(&balances[account], amount)
43
44 // Send the amount back to the Ethereum user.
45 send(account, &w)
46 }
47 }

G.3 Auction

Solidity

1 contract SimpleAuction {
2 // Parameters of the auction. Times are either
3 // absolute unix timestamps (seconds since 1970-01-01)
4 // or time periods in seconds.
5 address public beneficiary;
6 uint public auctionEnd;
7
8 // Current state of the auction.
9 address public highestBidder;
10 uint public highestBid;
11
12 // Allowed withdrawals of previous bids
13 mapping(address => uint) pendingReturns;
14
15 // Set to true at the end, disallows any change
16 bool ended;
17
18 // Events that will be fired on changes.
19 event HighestBidIncreased(address bidder, uint amount);
20 event AuctionEnded(address winner, uint amount);
21
22 constructor(uint _biddingTime, address _beneficiary) public {
23 beneficiary = _beneficiary;
24 auctionEnd = now + _biddingTime;
25 }
26
27 function bid() public payable {
28 require(now <= auctionEnd);
29 require(msg.value > highestBid);
30
31 if (highestBid != 0) {
32 // Sending back the money by simply using
33 // highestBidder.send(highestBid) is a security risk
34 // because it could execute an untrusted contract.
35 // It is always safer to let the recipients
36 // withdraw their money themselves.
37 pendingReturns[highestBidder] += highestBid;
38 }
39 highestBidder = msg.sender;
40 highestBid = msg.value;
41 emit HighestBidIncreased(msg.sender, msg.value);
42 }
43
44 /// Withdraw a bid that was overbid.
45 function withdraw() public returns (bool) {
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46 uint amount = pendingReturns[msg.sender];
47 if (amount > 0) {
48 // It is important to set this to zero because the recipient
49 // can call this function again as part of the receiving call
50 // before ‘send‘ returns.
51 pendingReturns[msg.sender] = 0;
52
53 if (!msg.sender.send(amount)) {
54 // No need to call throw here, just reset the amount owing
55 pendingReturns[msg.sender] = amount;
56 return false;
57 }
58 }
59 return true;
60 }
61
62 /// End the auction and send the highest bid
63 /// to the beneficiary.
64 function auctionEnd() public {
65 // 1. Check conditions
66 require(now >= auctionEnd, "Auction not yet ended.");
67 require(!ended, "auctionEnd has already been called.");
68
69 // 2. Effects
70 ended = true;
71 emit AuctionEnded(highestBidder, highestBid);
72
73 // 3. Interaction
74 beneficiary.transfer(highestBid);
75 }
76 }

Vyper

1 beneficiary: public(address)
2 auction_end: public(timestamp)
3 highest_bidder: public(address)
4 highest_bid: public(wei_value)
5 pending_returns: uint256[address]
6 ended: public(bool)
7
8 HighestBidIncrease: event({bidder: indexed(address), amount: indexed(uint256)})
9 AuctionEnded: event({winner: indexed(address), amount: indexed(uint256)})
10
11 @public
12 def __init__(_beneficiary: address, _bidding_time: timedelta):
13 self.beneficiary = _beneficiary
14 self.auction_end = block.timestamp + _bidding_time
15
16 @public
17 @payable
18 def bid():
19 assert block.timestamp < self.auction_end
20 assert msg.value > self.highest_bid
21 if not self.highest_bid == 0:
22 self.pending_returns[highest_bidder] += highest_bid
23 self.highest_bidder = msg.sender
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24 self.highest_bid = msg.value
25 log.Transfer(HighestBidIncrease(msg.sender, msg.value))
26
27 @public
28 def withdraw():
29 uint256 amount = pending_returns[msg.sender]
30 if amount > 0:
31 pending_returns[msg.sender] = 0
32 send(msg.sender, amount)
33
34 @public
35 def end_auction():
36 assert block.timestamp >= self.auction_end
37 assert not self.ended
38 self.ended = True
39
40 log.AuctionEnded(HighestBidIncrease(highestBidder, highestBid))
41
42 send(self.beneficiary, self.highest_bid)

Flint

1 contract SimpleAuction {
2 let beneficiary: Address
3
4 var highestBidder: Address
5 var highestBid: Wei = Wei(0)
6
7 var pendingReturns: [Address: Wei] = [:]
8
9 var hasAuctionEnded: Bool = false
10
11 var highestBidDidIncrease: Event<Address, Int>
12 var auctionDidEnd: Event<Address, Int>
13 }
14
15 SimpleAuction :: caller <- (any) {
16 public init() {
17 beneficiary = caller
18 highestBidder = caller
19 }
20
21 @payable
22 public mutating func bid(implicit value: Wei) {
23 // We have not implemented the unary not (!) operator yet.
24 assert(hasAuctionEnded == false)
25 assert(value.getRawValue() > highestBid.getRawValue())
26
27 if highestBid.getRawValue() != 0 {
28 // Record the amount owed to the previous highest bidder.
29 pendingReturns[highestBidder].transfer(&highestBid)
30
31 // Alternative: send(highestBidder, &highestBid)
32 }
33
34 // Set the new highest bidder.
35 highestBidder = caller
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36
37 // Record the new highest bid.
38 highestBid.transfer(&value)
39 highestBidDidIncrease(caller, value.getRawValue())
40 }
41
42 mutating func withdraw() {
43 var amount: Wei = Wei(&pendingReturns[caller])
44 assert(amount.getRawValue() != 0)
45 send(caller, &amount)
46 }
47
48 public func getHighestBid() -> Int {
49 return highestBid.getRawValue()
50 }
51
52 public func getHighestBidder() -> Address {
53 return highestBidder
54 }
55 }
56
57 SimpleAuction :: (beneficiary) {
58 public mutating func endAuction() {
59 assert(hasAuctionEnded == false)
60
61 hasAuctionEnded = true
62 auctionDidEnd(highestBidder, highestBid.getRawValue())
63
64 send(beneficiary, &highestBid)
65 }
66 }

149


	Introduction
	Challenges
	Contributions
	Community Feedback

	Background
	Ethereum, a Smart Contracts Platform
	Currency and Gas
	Cryptography and Addresses
	Accounts and Account States
	World State
	Transactions and Calls
	Blockchain
	Ethereum Virtual Machine and Bytecode
	EVM Events
	Secret-Sharing Example

	Solidity
	Coin Example
	Functions
	Calls to Functions
	Interfaces
	Application Binary Interface (ABI)
	Contract S from subsection 2.1.9

	Attacks Against Solidity Contracts
	Call Reentrancy: TheDAO Attack
	Function Visibility Modifiers Semantics: the First Parity Multi-sig Wallet Hack
	Using a Contract as a Global Library: the Second Parity Multi-sig Wallet Hack
	Unchecked Calls: King of the Ether Throne
	Arithmetic Overflows: Proof of Weak Hands Coin
	Transaction-Ordering Dependencies

	Current Attempts to Prevent Vulnerabilities
	Analysis Tools for Solidity and EVM bytecode
	Improving upon Solidity and EVM bytecode

	Remarks

	The Flint Programming Language
	Programming in Flint
	Declaring Contracts
	Declaring Structs
	Initialisation

	Type System
	Events

	Mutation and Constants
	Mutating Functions
	Let-constants

	Standard Library
	Global Functions and Structs
	Safe Arithmetic Operators
	Payable Functions
	Events

	Remarks
	Definitions and Safety Properties
	Towards Formal Verification
	Other Blockchains


	Caller Capabilities
	Motivation
	Design
	Safety
	Implementation
	Static Checking
	Dynamic Checking

	Remarks and Related Work
	Solidity Modifiers Are More Fine-Grained
	Overloading on Capability Groups
	The Term ``Capability''
	Caller Capabilities as Types


	Currency and Assets
	Motivations
	Properties
	Design and Implementation
	Properties

	Example use of Assets
	Distributing Money Among Peers

	Generalised Assets
	Trait Definition
	Default Implementation of Functions
	Implementing a Plane Ticket Asset
	Compiler Warnings for Misusing Assets

	Remarks
	Linear Types
	Protecting Privileged Operations
	Conversion between Assets


	Compiler and Code Generation
	Tokeniser
	Parser
	The AST Pass Mechanism for Better Extensibility
	AST Visitor and AST Passes
	Propagating Information when Visiting
	Code Example: Semantic Analyser for Contract Declarations

	Semantic Analysis
	Type Checker
	Optimiser
	Code Generation and Runtime
	IULIA Preprocessor
	Generating Code
	Public Functions and Application Binary Interface

	Internal functions
	Pass by Reference Implementation
	Mangling

	Storage and Memory Organisation
	Contracts and Structs
	Arrays and Dictionaries

	Runtime Functions
	Intermediate Representation Organisation
	IR Overview
	Embedding in a Solidity File
	Contract Initialisation
	Alternative Intermediate Representations

	Command-line Tool
	Testing
	Syntax Tests
	Semantic Tests
	Functional Tests
	Automated Deployments

	Remarks

	Future Implementation Work
	Language Features
	Type States
	Bounded Loops
	External Function Calls
	Capability Functions
	Attempt Function Calls
	Late Assignment of Local Constants
	Other Improvements

	Gas Estimation
	Flint Package Manager
	Remarks

	Evaluation
	Performance and Programming Style
	Caller Capabilities
	Asset Types and Safe Arithmetic Operations
	Auction

	Preventing Vulnerabilities
	Preventing TheDAO Vulnerability
	Preventing the Proof of Weak Hands Coin Vulnerability
	Bypassing Flint's Safety Features

	Community Feedback
	Publications and Awards
	Ethereum Community

	Conclusion

	Conclusion
	The Flint Grammar
	Installing the Flint Compiler and Running Flint Smart Contracts
	Installing Flint
	Docker
	Binary Packages and Building from Source
	Vim Syntax Highlighting

	Compiling and Running Flint Smart Contracts
	Using Remix
	Interacting with the Contract in Remix


	Flint GitHub Repository and Flint Language Guide
	GitHub
	Questions and Feature Suggestions
	Proposals

	Flint Language Guide

	Flint Package Manager Smart Contract
	Proposal to Rename Caller Capabilities
	Example Intermediate Representation File
	Full Contracts from Evaluation
	Caller Capabilities
	Asset Types and Safe Arithmetic Operation
	Auction


