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Abstract

Cryptomining, the clearing of cryptocurrency transactions, uses large quantities of

electricity. We document that cryptominers’ use of local electricity implies higher prices

for existing small businesses and households. Studying the electricity market in Upstate

NY and using the Bitcoin price as an exogenous shifter of the supply curve faced by

the community, we estimate the electricity demand functions for small businesses and

households, and find price elasticities of -0.17 and -0.07 respectively. Based on our

estimates, we calculate counterfactual electricity bills, finding that small businesses and

households paid $79 million and $165 million extra annually in Upstate NY because

of increased electricity consumption from cryptominers. Using data on China, where

prices are fixed, we find that rationing of electricity in cities with cryptomining entrants

deteriorates wages and investments, consistent with crowding-out effects on the local

economy. Local governments in both Upstate NY and China, however, realize more

business taxes, but only offsetting a small portion of the costs from higher community

electricity bills. Our results point to a yet-unstudied negative spillover from technology

processing to local communities, which would need to be considered against welfare

benefits.
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“One-third of the county’s residential energy [is] used in one factory that employs 19

people.”

City Commissioner, Missoula, Montana (CrowdfundInsider, 3/19/2019)

“There is no job commitment and they have a huge powerload that destroys the [purchase

power adjustment], it forces all the ratepayers to pay a higher rate.”

Mayor of Village of Westerfield, NY (Village Board Minutes, 3/19/2018)

1 Introduction

High energy use is no longer confined to sectors of the economy such as metals, pulp,

and oil, but it is increasingly a feature of many technology processing industries, including

quantum computing, artificial intelligence, natural language processing, and cryptocurrency

mining (“cryptomining”). Estimates suggest that technology processing passed the milestone

of consuming 1% of world energy in 2010 and is on trajectory to increase to 6% by 2030

(Masanet et al. (2020); Andrae and Edler (2015)). Data centers and Bitcoin mining alone

now consume 0.9% and 0.5% of global electricity, respectively (Andrae (2017); Cambridge

Center for Alternative Finance.).1 Technology firms prefer to avoid this topic; Google, for

example, was recently accused of firing a top ethics researcher because her study highlighted

the vast electricity use in language processing (MIT Technology Review, 2020).2 The reason

is that intensive electricity use can cause externalities. The obvious first externality is the

carbon emission resulting from electricity production. The website Digiconomist estimates

that the global pollution damage from Bitcoin mining alone is equivalent to that of Pakistan

(also see De Vries (2018) and Blandin et al. (2020)). This paper concerns a second, unstudied

externality — the effect of technology processing on local economies. In particular, we study

the spillovers from cryptomining on households and small businesses, happening through the

interaction of supply and demand in the electricity market.

Cryptomining is the clearing of payment transactions for certain decentralized blockchain-

based payment systems called (proof-of-work) cryptocurrencies.3 Cryptomining involves

a race to solve complex mathematical problems, which in turn requires huge amounts of

computational power. The idea behind this process is to avoid designating a central agent

for validating transactions. Rather, any person or firm can become a cryptominer, choosing

to participate in the solving of increasingly complex computational puzzles in order to verify

1https://cbeci.org/cbeci/comparisons.

2https://www.technologyreview.com/2020/12/04/1013294/google-ai-ethics-research-paper-\

forced-out-timnit-gebru/

3Not all cryptocurrencies use proof-of-work cryptomining to clear transactions; our study does not pertain
to other forms of blockchain technologies, distributed ledgers, and private party-cleared stablecoins.
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the validity of the transactions (see Ciamac and Moallemi (2020) and Chen et al. (2019)).

This has led to an arms race among firms who run large cryptomines — essentially warehouses

full of specialized computers crunching numbers — across the world.

The story we tell is a simple one. When a large technology processor enters a town, the

new entrant shifts out the total demand curve for electricity. If the supply curve is upward-

sloping, those on the original community demand curve face a different, higher-price portion

of the supply curve. If instead the supply of electricity operates in a fixed-price regime, the

new demand may instead induce shortfalls in the availability of electricity for the community.

We begin our analysis in New York State, specifically Upstate NY, excluding New York

City and Long Island. NY has a typical grid electricity system. The grid operator, NYISO,

employs a marginal supply pricing scheme, whereby upward pressure on prices from demand

gets passed onto households and small businesses through a component of the electricity

bill called electricity supply charge or purchase price adjustment. This pricing is location-

specific in that it is affected by congestion as well as distance from the marginal power plant

(i.e., that which can provide the next increment of needed supply at the cheapest rate). We

analyze whether the use of electricity by cryptominers affects the location-specific marginal

price of electricity that small businesses and households pay.

Using town-month level data, we estimate the local demand for electricity from NY

households and small businesses. We address the well-known problem of quantities and

prices being endogenous by instrumenting the price of electricity paid by small businesses

and households with the price of Bitcoin. When Bitcoin prices are high, the returns from

cryptomining are higher in expectation, since the reward to miners is paid in Bitcoins. Thus,

the Bitcoin price shifts the demand for electricity by cryptominers. In a first stage regression,

we find that the F -statistic is approximately 700, indicating that the instrument is strong.

Further, we argue that the exclusion restriction required of the instrument is reasonable,

as it is unlikely that the Bitcoin price would affect the demand for electricity by small

businesses and households in NY. In the second stage, we find a statistically significant,

negative price elasticity of demand for electricity by the local communities. In particular,

the price elasticity of demand for households and small business are respectively -0.17 and

-0.07, consistent with the literature on electricity demand. For example, Ito (2014) estimates

medium-long run elasticities to be between -0.071 and -0.088 for California households.

Next, we apply the instrumental variable (IV) estimates in a community welfare calcula-

tion.4 We use the first stage regression to compute a counterfactual price for the equilibrium

under no cryptomining and then simply integrate the demand curves estimated in the second

4Cryptominers, like other high electricity-use technology processors, are somewhat unique in the very
narrow path whereby their production can promote local welfare. Cryptomining facilities are usually remote
from the corporate owner, implying that producer surplus is realized in other physical locations. Cryp-
tocurrency production is immediately transferred remotely via technology; thus, any positive upstream or
downstream externalities from the production of cryptocurrencies are not realized locally. Likewise, crypto-
mining facilities create very few jobs. Together these unique features allow us to hone in on how spillovers
from cryptomining directly affect local households and small businesses by focusing on the electricity market
channel.
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stage between the counterfactual price and the higher price with cryptomining. This integral

corresponds to the reduction in household or small business welfare due to the cryptomining-

driven increase in electricity prices.

We find that cryptomining leads to the representative household and small business in NY

paying $71 and $144 more in their electricity bills per year, respectively. In aggregate, NY

households and small businesses pay $165 million and $79 million more annually (excluding

any spillovers to New York City). These results are just the tip of the iceberg. If Upstate NY

represents a quarter of U.S. cryptomining5 and other states have similar price effects, our

results imply that cryptomining itself induces a cost of $1 billion annually to U.S. households

and small businesses, with the caveats of a back-of-the-envelope aggregation to national scale.

The implications of our cryptomining price results likely extend to data centers; if so, these

aggregations would be a substantial underestimate.

The U.S. represented only 7.24% of global cryptomining in 2020.6 In other countries,

local externalities may occur through quantity rationing rather than increases in prices.

This possibility might be particularly important in China, which hosted 65-82% of world

cryptomining during the last decade.7 In China, the pricing mechanism is shut down because

provinces set fixed electricity prices, updated only infrequently. Further, electricity grids are

regional and cover long distances. Hence, when total demand increases, the electricity supply

may need to be rationed in some locations until the physical infrastructure can be adjusted.

To explore possible externalities associated with the rationing of electricity in local

economies, we exploit an annual panel of statistics at the city level for China (cities in the

data include the surrounding areas). Our empirical design embeds the endogenous choice of

cryptomining locations in a difference-in-difference identification strategy. From a produc-

tion vantage point, the key determinants of cryptomining location choice are temperature

(since the computers used for cryptomining require cooling), distance from a power plant,

and the price of electricity. We first use data on each of these determinants to estimate

a location model; the estimated propensity scores are then used in an inverse probability

weighting (IPW) model to identify the effect of cryptomining on a range of local economy

outcomes. Our location model produces an area under the ROC curve (a measure of pre-

dictive accuracy) of over 0.90. This suggests that our IPW strategy controls for the vast

majority of the selection in the location decision.

We find that after cryptomining enters a city, the local business sector declines. In

particular, local fixed asset investments decline annually by 0.36%, and the labor market

wage level declines by 0.68%. These results suggest that cryptomining tends to crowd out

other business uses of electricity.

5Other locations of cryptomining in the United States include Washington, Texas, Nebraska, Georgia,
North Carolina, Kentucky, Oregon, and Montana.

6CCAF, 2020, January, 2021, from https://cbeci.org/mining_map.

7This range is derived from Hileman and Rauchs (2017) and current information on https://

digiconomist.net.
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The discussion thus far suggests only negative welfare effects on the local community.

However, it is possible that local governments allowing cryptomining in their jurisdictions

may benefit from a more lucrative source of taxes. Testimonial evidence suggests that

cryptomining is a very profitable (and thus very taxable) use of the local electricity supply.

Therefore, our final exercise tests whether the entrance of cryptomining in a community

results in a change in tax revenues. We conduct this test both in NY and in China, using the

same location choice IPW model discussed above. We find that Upstate NY communities

hosting cryptomining experience an increase in taxes per capita by $29.5 dollars. Given that

average per capita community taxes are $508, the effect represents an increase of about 6%.

In China, we find that cryptomining generates 0.15% more business tax revenues.

We conclude by combining our cost and benefit estimates for local communities in Upstate

NY. On the one hand, we estimated a local welfare cost of over $240 million per year via

higher electricity prices. On the other, we found that cryptomining is associated with an

increase in annual tax revenues by almost $40 million. Hence, higher tax revenues recover

approximately 15% of the losses for households and small businesses. Overall, we estimate

a local net cost of about $200 million per year in Upstate NY only.

Our analysis abstracts from a number of advantages of proof-of-work cryptocurrencies

for users worldwide, including the democratic nature of the process whereby transactions

are validated, anonymity, and lower transaction fees. A full assessment of proof-of-work

cryptocurrencies requires trading off these advantages against the local economy spillovers

studied in this paper as well as the global externalities from energy consumption inherent

in cryptomining (Li et al. (2019); Truby (2018); De Vries (2018); Goodkind et al. (2020)).8

While this comparison is beyond the scope of this paper, we contribute to the discussion by

highlighting and quantifying the effects on local economies.

To the best of our knowledge, our paper is the first to study local externalities from

energy-intensive technology processing, and in particular cryptomining. We believe that this

may have been overlooked in the literature due to three reasons. First, one might assume

that electricity supply is insulated from demand pressures because of the transmission grids

in electricity supply. Yet, the very local nature of supply of and demand for electricity

can matter. Second, those who are negatively impacted are atomistic users of electricity

(households and small businesses) and are thus more likely to be overlooked relative to

larger entities. Third, it is possible that because energy consumption is a small fraction of

expenditure for local community, the externality is not deemed first order. For example, in

the UK, electricity consumption is only 4% to 6% of monthly household expenditures and

3% of monthly small business expenditures (Department of Energy and Climate Change

(2014)). We find that the effects aggregate to substantial costs for local communities, and

the magnitudes would be much larger if we were to extrapolate from cryptomining to all

other high electricity-use technology processes. It is also useful to note, as a comparison,

8Cong et al. (2018) show that the rise in mining pools tends to exacerbate the arms race between miners,
thus resulting in even higher energy consumption relative to the case of solo mining.
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that Baker Institute for Public Policy (2014) estimates an effect of energy carbon taxes on

GDP per capita in the US of the same order of magnitude as our estimates.

In addition to the references cited above, our paper is related to a literature discussing

the potential for instability in the blockchains associated with proof-of-work cryptocurrencies

due to attacks (Budish (2018), Biais et al. (2018)), cheating (Chiu and Koeppl (2019)),

mechanisms in the fee system (Easley et al. (2018)), or fraud in the holding of assets (Twomey

and Mann (2019)).9 Critics also question proof-of-work blockchains as a useful store of value

and an integral component of the financial system architecture (Liu and Tsyvinski (2018);

Li et al. (2019); Makarov and Schoar (2020)). Finally, our paper contributes to the literature

on the impact of large economic players on local economies (e.g., Basker (2005), Jia (2008),

Ellickson and Grieco (2013)). This literature has focused on the effect that large entrants

— e.g. Wal-Mart — have on local competitors and the labor market. Our paper sheds light

on a different channel, the equilibrium in the electricity market, which is likely to play an

increasing role given the rise of high energy-use technologies.

2 Conceptual Framework

“The city council unanimously approved an 18 month moratorium on crypto mining activities

in Plattsburgh.... The idea of a moratorium was first introduced by mayor Colin Read in

January after residents reported inflated electricity bills.”

Coin Telegraph, March 16, 2018

“In Venezuela, Bitcoin mining has caused blackouts while experts say the mass amounts of

energy consumed could instead be used to power homes and businesses.”

Daily Mail, January 19, 2019

In this section, we introduce an electricity supply and demand framework to illustrate

how the entry of a cryptominer can impact the local economy, specifically by increasing the

price and potentially hindering the availability of electricity for local businesses and house-

holds. Cryptomining requires minimal human intervention and is carried out by a few large

companies; thus, we can realistically abstract away from the possibility that cryptomining

creates new jobs where the cryptomine is located or that cryptominer profits are reinvested in

the local economy. We also abstract from negative pollution externalities, both locally (e.g.,

9Additional references on cryptocurrencies and the limitations of proof-of-work protocols include Kroll
et al. (2013); Yermack (2015); Halaburda et al. (2016); Dimitri (2017); Alsabah and Capponi (2018); Budish
(2018); Kugler (2018); Ma et al. (2018); Prat and Walter (2018); Carlsten et al. (2016); Saleh (2019), Chiu
and Koeppl (2019); Pagnotta and Buraschi (2018).

6

Electronic copy available at: https://ssrn.com/abstract=3779720



air quality could deteriorate due to increased activity of a local power plant) and globally

(notably, climate change).

In our simple model of energy demand and supply, we focus on the case in which the

electricity supply curve is upward sloping, and thus electricity prices vary with market condi-

tions, as is the case in the U.S.10 In Panel A of Figure 1, the fine dashed blue line represents

the aggregate local demand (households and businesses) prior to the entry of cryptominers.

We refer to this as “community demand” and denote it by Dcommunity(P ). The solid (black)

line is the supply curve so that the initial equilibrium is given by the point E0, where the

community demand intersects the supply curve.

Cryptominers enter the locality with the dotted red demand curve, denoted Dcrypto(P ).

Note that this curve is flatter than the community demand, indicating that cryptominers

are more price elastic than the local community. This reflects the fact that one of the

key factors driving a cryptominers’ location decision is electricity prices (something we will

document empirically) and that, conversely, community demand includes local consumption

for necessities such as heating and lighting. The horizontal sum of community demand and

cryptomining demand (the lighter green solid line) is total local demand for electricity

Dtotal = Dcommunity +Dcrypto,

and its intersection with the supply curve (denoted E1) represents the equilibrium after the

entry of cryptominers. Since supply slopes upward, the increase in total demand due to the

entry of a cryptominer translates into higher prices (P1 > P0) for the community.

In Panel B of Figure 1, we consider the case in which the total demand after the entry of

cryptominers exceeds the available capacity. Some of the total demand remains unfulfilled

corresponding to the difference Qunc −Q1. While the model is silent about who will be left

out, it is often local businesses or even households that bear the brunt. This is consistent

with the fact that cryptomining is a highly profitable business and is thus likely to be

prioritized by tax revenue-maximizing local governments, who may have binding contracts

with cryptominers. The resulting potential blackouts imply another negative externality.

For the purposes of our empirical analysis, we specify the community demand as a stan-

dard constant elasticity demand function:

Dcommunity = exp (α + γX)P−β, (1)

which, taking logs, leads to the log-linear form

logDcommunity = α + γX − β logP. (2)

We will take equation (2) to the data. Integrating (1), we can compute the change in

10In other markets, prices are set by regulators for extended periods of time, so that the supply curve is
flat. We consider this variation in our empirical analysis of cryptomining effects on communities in China.
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community surplus due to an increase in P from p0 to p1 as

∆Welfare Community = −
∫ p1

p0

Dcommunity(p)dp = −exp (α + γX)

1− β

(
p1−β1 − p1−β0

)
. (3)

Community welfare decreases if electricity prices increase due to the entry of cryptominers.

Figure 2 provides a visual representation of the welfare loss that mirrors the expression in

(3): the welfare loss is obtained by integrating the community demand function between the

initial price and the new higher price.

However, a countervailing effect could be that the local tax revenues might increase if

local governments are able to tax the cryptomining taking place in their jurisdictions in a

way that offsets potential concurrent decreases in tax revenues. We denote this by

∆Welfare Government = τ × π (Dcrypto) , (4)

where τ is the local tax rate on cryptomining profits and π denotes the mapping from energy

used as an input to cryptomining into profits.

To summarize, the total social welfare change for the local community will be the sum

of the increase in government welfare due to possibly higher tax revenues and the decrease

in community welfare due to higher electricity prices:

∆Social Welfare = ∆Welfare Government(Dcrypto, τ)︸ ︷︷ ︸
(+)

+

∆Welfare Community(P (Dcrypto), Dcommunity)︸ ︷︷ ︸
(−)

.
(5)

The goal of our empirical analysis will be to quantify each of the two effects in (5), thus

providing a measure of the overall impact of cryptomining on local welfare.

3 Data and Summary Statistics

Our primary analysis focuses on the electricity use and local economies in New York

State. New York (NY) is an attractive market to study local economy effects because of large

cryptomining energy use, rich local economy data, and a large number of rural communities

and small cities. In manual searches from online sources — mostly, local news and local

government documents — we find that 12 of 52 counties have at least one cryptomining

facility in Upstate NY. (We exclude New York City and Long Island given their unique local

economy setting relative to the rest of the State.) Given that electricity pricing transmits

through the NY electricity grid, cryptomining in any of these twelve counties could affect

pricing throughout the State.

We complement this analysis with evidence from China. As mentioned, China is the
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country hosting the most cryptomining in the world, and thus an important market to

study. In addition, the vast number of cryptomining facilities across China allow us to

estimate a cross-sectional location choice model which we then use to identify the causal

impact of cryptomining on economic outcomes at the city level. Further, in China, the price

of electricity does not vary within a province and only adjusts every few years.11 Therefore,

the price channel is shut down in China, and quantity of electricity available is the main

mechanism through which cryptomining may affect local communities.

3.1 New York State Data

“Bitcoin mining companies were attracted to the abundant and cheap electricity, with two

cryptocurrency mining businesses reportedly operating in Plattsburgh in 2017... During a

particularly cold winter... electric power had to be purchased from other sources at higher

rates... The two cryptocurrency companies operating in Plattsburgh at the time contributed

to an increase of nearly $10 to monthly electricity bills in January 2018 for residential

customers.”

Congressional Research Service (2019)

3.1.1 Overview of NY Electricity Pricing Grid

At over 19 million people, NY is the fourth most populous state in the country, and

alone would be the eleventh largest economy in the world. Moreover, NY emits one out of

every 200 tons of energy-related carbon dioxide in the world.12 Electricity providers divide

consumption of electricity in NY into three local sectors – residential, commercial (small

business), and industrial. The average NY monthly electricity bill is $107 for residential

customers, $919 for small business, and $9,390 per month for industrial customers, with

residential, small business, and industrial customers paying 17.6 cent/kWh, 15.06 cent/kWh,

and 6.7 cent/kWh, respectively.13 While the residential and small business rates are among

the five most expensive in the country, the industrial rate is much lower, ranking right in

the middle among the states. According to a report by the Congressional Research Service,

11Figure 3 shows average electricity prices for selected provinces in China. We find limited variation across
years, which is likely to reflect political decisions rather than economic forces, such as cryptocurrencies entry
in specific markets. If anything in the provinces where we find more evidence of cryptomining presence
(Heilongjiang, Inner Mongolia and Sichuan) electricity prices increase by less than in provinces without
cryptomining activity (Guangxi, Jilin and Shaanxi).

12Forbes, February 20, 2020, “New York Power Grid Proposes Adding Carbon Costs to Market Price of
Electricity”.

13https://www.electricitylocal.com/states/new-york/.
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favorable electricity rates in Upstate New York may have encouraged cryptominers to relocate

their operations to the area.14

The electricity price faced by end users is the combination of a number of line items

appearing on the monthly statement. A statement will have a fixed monthly service charge,

a delivery charge per kilowatt, a number of adjustment and legacy charges, and a component

called electricity supply charge.15 For our purposes, the key aspect of this pricing system is

the electricity supply charge, which varies over time and by location as we discuss next.

Electricity is generated at various plants and is transmitted via a grid, with the New

York Independent System Operator (NYISO) managing the wholesale electricity market.16

The grid revolves around a pricing mechanism called the location-based marginal pricing

(LBMP). Power generating plants inform the grid IT system as to their supply schedules

(prices and quantities) on an ongoing basis. The system then decides which generator is

the next marginal supplier, based on demand and supply. The generators have projections

for these calculations, so that they can plan ahead to bring supply online or offline as

demand warrants. The marginal price is then adjusted for each demand location according

to transmission distance and congestion on the lines, thus ending with a location-based

marginal price.17

Putting these mechanics together, we see that electricity prices fluctuate by location and

by sector within the economy and that the LBMP — which affects the electricity supply

charge and is thus passed onto end users — would be affected by an increase in demand

relative to the usual level. In our context, cryptominers increase total demand, which affects

what portion of the supply curve the community faces and may drive up the electricity price

for all community users (residential and small business) at all locations through the LBMP

grid mechanism.

3.1.2 Local NY Consumption of Electricity

New York State regulators mandate the reporting of monthly data on electricity utiliza-

tion and prices from utility providers. Upstate New York has four major investor-owned

utility companies and several smaller community providers. Our main empirical analysis is

based on highly detailed data on electricity consumption for the largest investor-owned util-

ity companies collected by the New York State Energy Research and Development Authority

14The report can be found at https://crsreports.congress.gov/product/pdf/R/R45863.

15See, for example, https://www.nationalgridus.com/Upstate-NY-Home/Rates/Service-Rates.

16Further explanation of the electricity grid is available at NYISO’s webpage: https://www.nyiso.com.

17Some power plants have independent contracts with municipalities and industrial users, including cryp-
tominers. For example, Tim Rainey, the CFO of cryptomining company Atlas, who bought the Greenidge
Generation power plant, discusses the role of the grid: “As both the cryptocurrency markets and the power
markets are constantly fluctuating, we do whichever is more profitable at any given time—either sell the
generated power or mine crypto with that power.” “Bitcoin Mining Can Be Profitable, If You Generate The
Power,” Forbes, Aug 13, 2020.
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(NYSERDA), and high-frequency data on location-based marginal prices at the generator

level collected by the New York Independent System Operator (NYISO).18

Panel A of Table 1 reports summary statistics from our combined dataset. First, we

report electricity consumption by user type at the community, electricity provider and year-

month level. The average community consumption by households is about 1,500 MWh,

while the median is about half at 0.7 thousands MWh. The average number of residents per

community-provider is about 2,300, while the median is almost 900. The average consump-

tion of electricity by small businesses is lower than for households, while other businesses

consume about seven times as much as small businesses (500 and 3,500 MWh, respectively).

The difference between small and other businesses is even starker if we look at per capita

consumption. The average (median) number of small business customers is about 250 (90),

while the average (median) number of other businesses is about 100 (40).

Second, panel A of Table 1 reports the average LBMP after merging the data on the

location-based marginal price (LBMP) with the electricity consumption dataset. To combine

the data on electricity consumption with information on the LBMP, we first construct a daily

time series at the generator level by averaging real time LBMP data from NYISO. Then

we assign each generator to its community based on geographical coordinates. Finally, we

compute the average LBMP at the year-month and community level by averaging across days

of the month and across generators in the community. The average LBMP is about $27/MWh

and it ranges from $2.5/MWh to more than 100$/MWh across communities/providers and

over time.

3.1.3 Cryptomines and Other Local Economy Variables

We gather additional data on communities in Upstate NY from several sources which we

report in Panel B of Table 1. First, we report average temperatures in Fahrenheit. The mean

temperature is about 47, ranging from a minimum of about 13 to a maximum of 75. Second,

we show the average monthly price of Bitcoin (obtained from https://coinmarketcap.com).

In our sample period, the price of Bitcoin is on average $4,000, but it ranges from $400 to

more than $15,000. In the empirical analysis, we exploit these large swings in the Bitcoin

price to identify the electricity demand in Upstate NY.

Panel B of Table 1 also shows additional town-level variables that we use in our analysis

of the effect of cryptomining on local government finances. Taxes per capita are on average

$520, ranging from a minimum of $66 to a maximum of $9,000. Total local government

expenditures per capita are higher on average than taxes and exhibit more variability. Ex-

penditures per capita are on average $820, ranging from a minimum of $43 to a maximum

of about $15,000.

Finally, we since no public registries exist as to the location of cryptomines, we hand

18The two dataset can be downloaded at https://www.nyserda.ny.gov/All-Programs/

Programs/Clean-Energy-Communities/Community-Energy-Use-Data and https://www.nyiso.com/

energy-market-operational-data, respectively.
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collected data on their likely location, starting from the list of all communities in Upstate

NY from the electricity consumption dataset. For each community, we do manual searches in

Google and Google News to look for local news articles or other web references to any crypto-

mining facilities. Our search terms include cryptomining (and variations of it, such as crypto

mining and crypto-mining), the names of the top cryptocurrencies (Bitcoin, Ethereum, Rip-

ple), and the names of the top mining pools (BTC.com, AntPool). We do multiple concurrent

(blind) coding rounds so as to verify the information with different manual reads. We code

a mining variable equal to 1 only if an article or webpage explicitly mentioning crypto op-

erations in the community. We find evidence of cryptomining in 13 communities which are

located in 12 different counties. Figure 4 shows a map that summarizes our hand-collected

data on local evidence of cryptomining in Upstate NY. The majority of cryptomining ac-

tivity in Upstate NY is concentrated in the colder and less-populated North, close to large

hydropower sources. This pattern is consistent with anecdotal evidence that cryptomin-

ing companies prefer location with colder weather (because the machines become hot and

malfunction without cooling), and with affordable and reliable energy supply.

3.2 China Data

3.2.1 Cryptomines and Power Plant Locations in China

Turning to China, we follow an approach similar to the one discussed in Section 3.1 for

Upstate NY to identify location of cryptomines. We start with all the cities reported in

each Province’s economic statistics Yearbook. City designations are more akin to a county

with a city seat and a surrounding area under the same jurisdiction; all of the land mass is

covered by city divisions. We exclude all coastal provinces and three major urban centers

(Beijing, Chongqing, and Tianjin) as their economies are not similar to the inland areas

where cryptomining operations occur (Blandin et al. (2020)), and cryptomining is not a

feature of these outward-facing economies. Further, we exclude the autonomous regions of

Tibet and Qinghai, due to sparse data on economic outcomes.

For each city, we do manual searches in Google and Google News (in English), but

also in Baidu and Baidu News (in Mandarin) to look for local news articles or other web

references to any cryptomining facilities. As for Upstate NY, we have multiple concurrent

(blind) coding rounds so as to verify the information with different manual reads. We code

a mining variable equal to 1 only if an article or webpage explicitly mentioning crypto

operations in the city (or the area administered by the city). In China, we find 54 cities with

cryptomining and 164 cities without cryptomining. Figure 5 shows a map that summarizes

our collected data on local evidence of cryptomining in China. Panel A shows the number

of cities with cryptomining activities across provinces, while Panel B shows the cities where

we find evidence of cryptomining.

Testimonial evidence suggests that cryptominers tend to view a location as desirable if it

exhibits colder temperature, low electricity price, proximity to a power plant, and a friendly
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local government. This motivates us to gather data on the location of power plants, in

particular focusing on the distance to the closest power plant (calculated using GIS mapping)

and the power source (hydro, coal, solar, gas, wind, or oil). The data on location of power

plants comes from the Global Power Plant Database, which is a comprehensive, global, open

source database of power plants.19 We use temperature, proximity to a power plant and

electricity price in the location model. As our subsequent analysis will show, our location

model reaches an area under the ROC curve of over 0.90, indicating that the included

variables capture most of the drivers of cryptominers’ location decisions.

3.2.2 Energy Mix

Anecdotally, the media often mention two Chinese provinces as hosting many crypto-

mining facilities. One province, including the cities of Erdos and Baotou, is Inner Mongolia,

largely powered by coal plants. The other is Sichuan, which has hosted a large volume of

cryptomining during its high-river season close to the city of Mianyang. The disparity of

cryptomining being supported by fossil fuels as opposed to hydropower may be important

for our business activity tests, but also is important in and of itself.

We find that 27.8% of cryptomining cities are powered by hydropower and that an ad-

ditional 13% are powered by wind. This leaves just short of 60% of cryptomining cities

being powered by coal (48.2%) and gas (11.1%). Since we do not observe capacity at each

cryptomine, we are not able to translate this into a breakdown of the energy mix used to

power the overall cryptomining taking place in China. However, given that some of the

largest cryptomines are known to be located in Inner Mongolia, it is likely that 48.2% is an

underestimate of the importance of coal.

If 48.2% of Chinese cryptomining is powered by coal, and 80% (in 2020, 60%) of the

world’s cryptomining happened in China during our sample period, this implies that at least

39% (in 2020, 29%) of the world’s cryptomining was coal-based or 47.4% (36% now) was

fossil-fuel-based if we also include oil power plants. This is a large underestimate since we

assume all other cryptomining is from renewables, which is clearly not the case for the large

cryptomines in Alberta, Canada, Western Australia, and many other places where the media

have documented cryptomining takes place. Thus, we conservatively conclude that one-half

to two-thirds of cryptomining involved fossil fuels during this time period.

3.2.3 Local Economy Variables

We gather data on the local economies of Chinese cities from the province-level Year-

books, published directly on each province’s websites. Our Chinese city data cover the years

2011-2017. Table 2 reports the summary statistics for 154 Chinese cities without cryptomin-

ing and 52 cities with evidence of cryptomining. The average city has a population of 356,000

with no large differences between cities with or without cryptomining. The average GDP of

19The dataset can be downloaded at http://datasets.wri.org/dataset/globalpowerplantdatabase.
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cities with cryptomining (19 billion yuan) is higher than that of cities without cryptomin-

ing (14 billion yuan). Further, cryptomining cities consume on average more energy than

cities without cryptomining, collect higher business and value added taxes and have higher

fixed assets investments. Finally, we gather data on electricity prices at the province level

from the government agency National Development and Reform Commission.20 Consistent

with anecdotal evidence and the selection model we will discuss later, cryptomining cities

tend to be located closer to power plants, face lower electricity prices and experience lower

temperatures.

4 Empirical Analysis: New York State

“In recent months, NYMPA members have experienced a dramatic increase in requests

for new service for disproportionately large amounts of power. Most such requests come

from similar types of potential customers: server farms, generally devoted to data process-

ing for cryptocurrencies. ... These applicants tend to require high quantities of power and

have extremely high load density and load factors. In addition, these customers do not bring

with them the economic development traditionally associated with similar load sizes. These

customers have few to no associated jobs, and little if any capital investment into the local

community. ... The potential for sudden relocations results in unpredictable electrical use

fluctuations in the affected areas. In sum, HDL customers negatively affect existing cus-

tomers.”

— Read and Laniado, LLP, February 15, 2018

Our main empirical analysis considers the impact of increasing electricity demand from

cryptominers on community small businesses and households through the equilibrium in the

electricity market. We study this effect in New York State. We first present a case study as

suggestive evidence. We then lay out our main empirical strategy and present our estimation

results. Finally, we report a welfare calculation from our estimates.

4.1 Descriptive Evidence

We begin our analysis by considering a case study, which shows the impact of Bit-

coin prices on electricity consumption in NY State. Specifically, we focus on the city of

Plattsburgh, which attracted cryptomining operations — even before the large increase in

cryptocurrency prices between 2017 and 2018 — due to its cold climate and cheap electricity.

Figure 6 shows monthly electricity consumption — for small and industrial businesses —

in the town of Plattsburgh and the neighboring town of Peru. Before the end of 2017, both

Plattsburgh and Peru experienced a similar pattern in electricity consumption for businesses.

20See ndrc.gov.cn
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However, in January 2018 — when the Bitcoin price peaked — electricity consumption by

Plattsburgh businesses increased by almost 150%, whereas almost no change occurred in

Peru. While we do not directly observe the electricity consumption by cryptomining firms,

suggestive evidence indicates that cryptomining accounted for about 10% of the local demand

in Plattsburgh in January and February 2018 and contributed to an increase of about $10

in monthly electricity bills.21 Soon after this spike, Plattsburgh issued a moratorium on

cryptomining, and energy consumption returned to a pattern similar to that of neighboring

Peru.

4.2 Estimating Equations

Our identification strategy leverages an increase in cryptominer electricity demand as

an exogenous shock that drives up the price faced by the local community. We exploit the

role of the price of Bitcoin. When the Bitcoin price is high, cryptomining production has

a higher expected payoff since the reward from cryptomining is paid in the cryptocurrency.

Thus, the Bitcoin price shifts out the demand of electricity by cryptominers — and therefore

total demand — which in turn affects which portion of the supply curve is faced by the local

community.

For each user type u, our first stage equation is as follows:

log pct = αu log pBTCt + γu1Xct + µu1,p + µu1,c + εupct, (6)

where pct is the location-based marginal price in community c at time (month-year) t; Xct

includes other determinants of electricity consumption (e.g., local temperatures); µu1,p and

µu1,c are provider and community fixed effects. Provider fixed effects control for differences

in fixed costs or pricing structures across providers. The key parameter is α which captures

the elasticity of the location-based marginal price to the price of Bitcoin.

We now present our main outcome equations which follows directly from the framework

presented in Section 2. First, for each user type u, we estimate the following model:

log qupct = βu log pct + γuXct + µup + µuc + εupct, (7)

where qupct is the electricity consumption by user type u (household or small business) in

community c for provider p at time t. The key parameter is β, which captures the elasticity

of electricity consumption to the marginal price. When we use the price of Bitcoin as

an instrument for electricity prices to address the well-known endogeneity of prices and

quantities, our IV equation is given by:

log qupct = βu l̂og pct + γuXct + µup + µuc + εupct (8)

21See Ana Alexandre, “New York State Regulators Approve New Power Rate Structure for Crypto Miners,”
Cointelegraph, July 13, 2018.
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where p̂ct is instrumented using the Bitcoin price and all other variables are as in equation

(7).

4.3 Results

Table 3 reports the results for small business (Panel A) and residential (Panel B) elec-

tricity consumption at the community level. Focusing first on column (1), which reports the

results of our first stage regression, we find an elasticity of the location-based marginal elec-

tricity price to the price of Bitcoin of about 0.14. In other words, a 10% increase in the price

of Bitcoin is associated to a 1.4% increase in the location-based marginal price. The regres-

sion includes year fixed effects and controls for temperature. Importantly, the F−statistic is

approximately 700, suggesting that demand by cryptominers does put upward pressure on

electricity prices and, thus, that are our instrument is relevant.

Column (2) of Table 3 shows the results from the non-instrumented OLS regression of

electricity quantity demanded on the location-based marginal price; Panel A shows the results

for small businesses, while Panel B considers residential customers. The estimation includes

temperature as a control, community fixed effects, and utility provider and year fixed effects.

The positive coefficient on the LBMP reflects the well-known endogeneity issue in estimating

demand functions from data generated by the equilibrium interaction of demand and supply.

In the data, price increases could be driven by increases in demand (as opposed to reductions

in supply), thus complicating the task of recovering the true — i.e., all else equal — effect

of a price change on quantity demanded.

Column (3) Table 3 show the IV results, the main results of the paper, following from

equation (8). The instrumental variable strategy allows us to interpret the coefficient on

the LBMP as the true elasticity of community demand to price changes. The coefficient

is now negative and significant. As prices increase exogenously, quantity of electricity de-

manded declines. In particular, small businesses have an elasticity of demand of -0.179,

while residential customers have a lower elasticity of -0.074. For comparison, Ito (2014)

estimates medium-long run elasticities to be between -0.071 and -0.088 for California house-

holds. These findings lead to two implications. Households and small businesses choose to

consume less electricity in response to prices, and the price they pay is higher.

4.4 Local Welfare Calculation

Using our framework in Section 2 and our empirical results, we estimate the local welfare

effects of cryptomining on small businesses and consumers.

For each location, we use the estimates from the first stage regression (6) to compute the

predicted marginal price before and after the entry of cryptominers. Specifically, for each

community c and month-year t, we calculate

̂log pct,nocrypto = α̂u log pBTC2016 + γ̂u1Xct + µ̂u1,p + µ̂u1,c, (9)
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where the coefficients are the estimates from the first stage regression (column (1) of Table

3) and pBTC2016 is the average price of Bitcoin in 2016. Since the price of Bitcoin spiked in

2017 and early 2018 (spurring an increase in cryptomining worldwide), we take 2016 as our

“pre-cryptomining” benchmark. Thus, we interpret ̂log pct,nocrypto as the (log) counterfactual

electricity price that would have emerged in the community had cryptominers not entered.

Similarly, we compute

̂log pct,crypto = α̂u log pBTC2018 + γ̂u1Xct + µ̂u1,p + µ̂u1,c, (10)

and interpret this as a measure of the electricity price after the entry of cryptominers.

Given p̂ct,nocrypto and p̂ct,crypto (the non-logged versions of (9) and (10)), we calculate the

total welfare change at the community level using the integral in equation (3) as follows

∆Welfare Communityct = −
∫ p̂ct,crypto

p̂ct,nocrypto

Dcommunity(p)dp = −exp (α̂ + γ̂Xct)

1− β̂

(
p̂1−β̂ct,crypto − p̂

1−β̂
ct,nocrypto

)
,

where the coefficients α̂, β̂, γ̂ are given in the IV column of Table 3. In words, the decrease

in welfare is simply the integral of the community demand function between p̂ct,nocrypto and

p̂ct,crypto. Finally, for each location, we divide the total welfare changes by the number of

accounts to obtain per-capita (or per-business) welfare changes.

We find that households experience an extra cost of $6 per month, or $71 per year.

While the amount might seem small, we doubt that any residents would be indifferent if

they realized that they were paying higher prices because of cryptomining. The average

monthly electricity bill in NY is $106 for residents;22 thus, the welfare cost in percentage

terms is +6%. Further, note that our result is similar to our previously highlighted quote

from Plattsburgh that cryptomining had driven up the electricity prices for households by

$10 per month.

Small business losses are higher at $12 per month on average, adding up to $144 per

year. The average monthly electricity bill in NY for businesses is $919,23 implying a +1.3%

cost on average. However, since the distribution of electricity bills has a long right tail,

the percentage increase in costs is substantially higher for many businesses. Further, as

the Covid-19 pandemic has made very transparent, small businesses often operate with thin

margins.24

The aggregate implication is the households in Upstate New York pay $80 million extra

annually in electricity costs. Small businesses in Upstate New York pay $165 million more

22See https://www.electricitylocal.com/states/new-york/.

23See https://www.electricitylocal.com/states/new-york/.

24See, for example, Davis et al. (1996); Davis et al. (2007); Haltiwanger et al. (2013); Decker et al. (2014).
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in aggregate because of cryptomining.25 We represent these effects in Figure 7. Following

the discussion in Section 2, we show the market equilibrium before and after the entry of

cryptominers. Increased demand due to cryptominers’ entry leads to higher equilibrium

prices. The shaded areas represent the welfare losses for households (Panel A) and small

businesses (Panel B). Note that, consistent with our findings and the existing literature, we

plot both household and small business demand as very inelastic. Further, as in our data, we

depict household demand as being larger and less elastic relative to small business demand.

5 Empirical Analysis: China

We now turn to the case of China, which is the country hosting the most cryptomining

in the world. Unlike in NY State, electricity prices are fixed at the province level in China.

Therefore, in this section we do not focus on price effects, but rather consider the impact of

cryptomining on local economy activity happening through quantity channels. In particular,

the entry of highly energy-intensive players could crowd out other electricity uses and have

a negative impact non-cryptomining economic activity. On the other hand, cryptomining

could in principle boost local economies, e.g., by creating new jobs and pushing up wages,

although this seems unlikely given the nature of the business as we discussed above. To study

these possibilities, we estimate a difference-in-difference model with an embedded location

choice model to address endogenous selection.

5.1 Estimating Equations

We consider several outcome variables, denoted Yct, for each city c and year t. Specifi-

cally, we look at: (i) energy consumption (corresponding to Dcommunity+Dcryptomining in the

framework of Section 2), and (ii) labor market indicators and fixed asset investments (a

proxy for the commercial and industrial side of Dcommunity). In the next section, we will

use the same design to study (iii) business tax revenues (for the government side of local

welfare). Our estimating equation is given by:

log Yct = α cryptominingc × Postt + γXct + µc + µt + εct, (11)

where cryptominingc is a dummy equal to one if there is evidence of cryptomining operations

in city c; Postt is a dummy equal to one if t ≥ 2015; µc and µt are city and year fixed

effects; and Xct is a vector of time-varying city level controls.26 The interaction between

cryptominingc and Postt yields a standard difference-in-difference specification, with the

coefficient α measuring how hosting cryptomining activities affects the outcome variables

over time.

25We discuss and revisit this aggregate calculation in Section 6 and in reference to Table 9 after including
the effect of cryptomining on local government finances.

26Cryptomining entered China in earnest a few years earlier than it entered NY.
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In this specification, if miners’ location decisions were only based on time-invariant fac-

tors, we could consistently recover α. However, one might be worried that time-varying

factors might also influence the cryptominers’ location decisions. Hence, we employ inverse

probability weighting (IPW) where the weights are the propensity scores obtained from a

location model:

cryptominingc = f (Xc, Zc, ηc) . (12)

This location model analyzes location characteristics that are desirable for cryptominers,

using pre-2015 data. To formalize this, we define Y
(1)
ct , Y

(0)
ct as the potential outcomes for

city c in year t with and without cryptomining, respectively. The value Y
(0)
ct is the outcome

in city c had cryptomining never happened. By definition, it is not observed if city c hosts

cryptomining in the data. Conversely, Y
(1)
ct is the outcome for a city had cryptomining taken

place there. Then, under the “selection on observables” assumption

Y
(1)
ct , Y

(0)
ct ⊥ cryptominingc|Xc, Zc, (13)

an IPW regression based on (11) will yield consistent estimates of the effect of cryptomining

on the outcomes even in the presence of time-varying unobservables. In words, the “selec-

tion on observables” assumption (13) requires that the observables included in the location

and outcome models be rich enough that all remaining variation in the location choice is

independent of potential outcomes. We cannot prove this claim, but are reassured by the

fact that the location model has very high predictive accuracy, as discussed next.

5.2 Results

5.2.1 Location Selection

“On the way to Bitmain’s Ordos mine, I ask Su what he looks for when he surveys new

locations. He’s like Bitmain’s real estate developer, scoping out places that fill the right

criteria for a mine. It’s not quite “location, location, location” but there is a rough checklist:

climate, cost of electricity, distance to a power station, and lastly, whether or not there are

opportunities to partner with the local government.”

Tech in Asia, August 22, 2017

We model the location choice of cryptominers as a function of the city proximity (log

distance) to the closest power plant, the price of electricity, and the average annual temper-

ature in the city. In order to flexibly model the impact of the right-hand side variables on

the location decisions, we estimate a logit specification with piecewise linear splines. Specif-

ically, for each variable, we partition the support into three bins based on the terciles of the

distribution, and we include an intercept and a linear slope term for each of the bins. We

also include the natural logarithms of population, the city government budget, and GDP.
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Because our analysis on outcomes uses predictions from this estimation, we limit the sample

period to 2013 and 2014, the earliest years with a full panel of data yet prior to the period

in which cryptomining took off.

The results are shown in Table 4. Because the spline coefficients and node shifters are

not easily interpretable, we plot the predicted probability functions with the marginal effects

of power plant distance, electricity price, and temperature in Figure 8. Distance from power

plants plays a key role, with the closest locations having a predicted cryptomining probability

of 0.35 as compared to less than 0.05 for those farthest away. Regarding temperature, we

obtain a somewhat non-monotonic pattern, consistent with the fact that both colder coal-

based regions and the warmer Sichuan river-valley host many mining operations. The hottest

regions, however, are very unlikely to host cryptomining. Finally, turning to pricing, low

electricity prices greatly draw cryptomining activities, with the cheapest areas having almost

a 0.30 probability of hosting cryptomining.

What is perhaps most important is the fit of the model and, in particular, its predictive

accuracy. The most compelling statistic is the area under the ROC curve, which captures the

ability of the model to discriminate correct classifications into cryptomining locations versus

false positives. The statistic is 0.905 for our model, strongly suggesting that our approach

captures much of the cryptominers’ location decisions.

5.2.2 Local Economy Results

“In Venezuela, Bitcoin mining has caused blackouts while experts say the mass amounts of

energy consumed could instead be used to power homes and businesses.”

Daily Mail, January 19, 2018

All of the local economy specifications have a similar column structure, regardless of the

dependent variable. We first present OLS estimation of the economic outcome as a function

of cryptominingc × Postt, time and city fixed effects, and local economy controls. The

second column introduces IPW weighting based on the inverse of the propensity scores from

the selection model, balanced to provide equal propensity weighting for cryptomining being

selected and not. The third column then includes an interaction of cryptominingc × Postt
with whether the local power plant is fossil−fuel based (and including the necessary double

interactions). The second and third columns have fewer observations since the IPW process

drops cities that do not satisfy the common support assumption. In particular, cities that

have warmer weather, have high electricity prices, and are farther away from power plants

are dropped.

First, we look at energy consumption. Energy consumption at the city level should

increase with the entry of cryptomining, implying that more of the production of local

power plants is consumed in the local economy. As reported in Table 5, the R2 statistics

are extremely high, as energy consumption is very static year-to-year. While other economic
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indicators — population, GDP and electricity prices — do not emerge as powerful predictors

in such a specification, we find some evidence for an effect of cryptomining, but only for those

cities powered by fossil fuels. This increase is, however, modest. In fossil fuel-based cities, the

introduction of cryptomining was accompanied by a 0.23% increase in energy consumption.

The small magnitude of this effect suggests that other industries and commercial enterprises

may be cutting back on energy use as cryptominers enter.

Next, we look at whether cryptomining induces any spillovers in the local economies.

The potential for positive effects on the overall economy is indeed one of the arguments

often put forth by advocates of cryptomining. In order to test this claim, we look at the

impact of cryptomining on the local labor market (wages) and fixed investment by the

commercial sector (fixed asset investment). Note that we cannot isolate the investment by

the cryptominers themselves, so our estimates are biased toward finding a positive effect on

investments. We first look at per capita wage levels in columns (1) to (3) of Table 6. We find

that wages tend to decrease as a result of crypto operations. For these cities, the introduction

of cryptomining is accompanied by a decrease in wages of 0.68%. It is perhaps not surprising

that the labor market is not spurred by cryptomining investment, as cryptomining facilities

employ very few workers. The negative effect may result from declining demand for workers

by other commercial enterprises and industry due to cryptomining crowding out other energy

uses. In columns (4) to (6), we consider whether cryptomining has any positive spillover

effects on local business activity. The results indicate a negative impact on fixed asset

investments. We include wages in this specification to show that this effect is independent of

any other impacts mediated via the labor market. (The result does not change without this

control.) In terms of economic magnitude, the introduction of cryptomining is accompanied

by a decrease in local fixed asset investment of 0.36%. Taken together, these findings suggest

that it is possible that local economies suffer as a result of crowding out in the electricity

market.

6 Effects on Local Taxes

“It’s good for the economy. We’re seeing [bitcoin mining] really diversifying our economy.

There are millions of dollars being invested in the economy. It’s going to help our tax base....”

— Interview with Ron Cridlebaugh

Port of Douglas County economic development manager

Politico (3/9/2018)

Given the results in Section 4 for NY and Section 5 for China, it is natural to ask

why local governments in the US or China might be willing to allow or even encourage

cryptomining. The evidence thus far suggests only negative welfare effects on the local

community through higher electricity prices and energy crowding out. However, it is possible
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that cryptomining benefits local governments by providing a more lucrative source of taxes.

Testimonial evidence suggests that cryptomining is a very profitable (and thus very taxable)

use of local electricity supply. This might provide a substantial source of tax revenues for

local governments, especially in areas with declining economies. For example, the government

in Inner Mongolia has partnered with Bitmain, owner of two of the largest mining pools in

the world, and even granted the company access to subsidized electricity.

In this section, we explore if and to what extent the entry of cryptomining in a community

results in a change in local taxes and government expenditures. We perform this analysis

both in NY and in China, using the production location choice IPW model discussed in

Section 5.1.

6.1 China

In the context of China, we consider two measures of taxation collection — value-added

and business income. As per Chinese tax law, software and technology companies are subject

to value added taxation of production at a reduced rate of 6%.27 Our analysis of the effect

of cryptomining on local taxes follows exactly the estimating equations discussed in Section

5.1.

The results in Table 7 support the thesis that governments have an incentive to attract

cryptomining due to the fact that it tends to increase business tax revenues. This result

is weak except for cities for which the closest power plant is from clean energy, i.e. non-

fossil fuel-based. Thus, we focus on columns (3) and (6) for clean cities. We find that

in clean power cities, the introduction of cryptomining is accompanied by an increase in

business taxes by 0.15%. Again, this is consistent with the fact that cryptomining is a

highly profitable activity28 and, thus, one that tends to yield more tax dollars per unit of

electricity.

6.2 New York State

6.2.1 Results

We now study the effect of cryptomining on community-level taxes in NY. The tax data

available to us are at a lower frequency compared to the electricity price and consumption

data (annual rather than monthly). As a result, we cannot implement the same identification

strategy discussed in Section 4.2, which exploits high-frequency variation both in the price

of Bitcoin, and in the price and consumption of electricity. However, while the time-series

variation is more limited, we are able to exploit granular variation in the cross-section of

communities based on their exposure to cryptomining.

27Consultancy KPMG provides an informative report on Chinese VAT, which serves a large role in revenue
collection for the government (KPMG, 2016).

28See, e.g., digiconomist.com.
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We estimate a difference-in-differences specification on a yearly panel of communities in

Upstate NY. Specifically, our estimating equation is given by:

Yct = αcryptominingc × Postt + µc + µt + εct, (14)

where cryptominingc is a dummy equal to one if there is evidence of cryptomining operations

in the county where community c is located. We allow tax benefits to accrue across towns

within the same county government, because counties play a role in taxation and power

contracting at the town level. Postt is a dummy equal to one if t ≥ 2017; µc and µt are

community and year fixed effects. The interaction of cryptominingc with Postt produces a

standard difference-in-difference specification, with the coefficient α measuring how hosting

cryptomining activities affects the outcome variables over time.

Following the approach for China, we account for time-varying factors via an IPW spec-

ification based on a location model akin to that in equation (12). In particular, we capture

miners’ location choice using information on county-level average temperature and power

plant capacity in 2010 (the first year of our taxes and expenditures data). Figure 9 shows

a map motivating our model. In Panel A on the lefthand side, we depict the cryptomin-

ing counties in Upstate NY. In Panel B, we show a heat map of the average temperature

and power plant capacity by county in 2010. The Panel B maps reflect a strong correla-

tion between cryptomining activity and both power plant capacity (higher capacity predicts

cryptomining) and temperature (lower temperature predicts cryptomining).

More formally, Column (1) of Table 8 shows the estimates of the location choice model

using the panel of communities. We allow all towns in cryptomining counties to be treated, as

described above. We find that both power plant capacity and temperature have a significant

effect on the probability of a town hosting cryptomining. The results are consistent with

our estimates for the location choice model in China (see Table 4) and with climate and

proximity to power plants being among the main determinants of cryptominers’ location

choice.29 While very parsimonious, the fit of the model is quite good with an area under the

ROC curve statistic of about 0.70.

The right-hand side of Panel A in Figure 9 shows the fitted probability that a county

hosts cryptomining. Our prediction of cryptomining location closely tracks the power capac-

ity distribution across counties. As robustness to unwind the tightness of the location-power

capacity relationship, we also implement a model that just uses the common support re-

quirement implied by the location model, but without the final probability weighting.

Columns (2) to (4) of Table 8 show the results using taxes per capita as the dependent

variable. Columns (5) to (7) report results on the flip-side of taxation, i.e. government ex-

penditures per capita. First, columns (2) and (5) reports the OLS estimates of the difference-

in-difference model given by equation (14). We find that treated communities experience a

differential increase in annual taxes per capita compared to control communities after the

29See, e.g., https://www.techinasia.com/inner-mongolia-bitcoin-mine.
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introduction of cryptomining. The effect is statistically significant and the point estimate

implies an increase of about $17 per capita. We cannot, however, identify and effect of

cryptomining on expenditures in the OLS specification.

Columns (3) and (6), the main estimates, presents the tax results from the IPW-selection

model. We again find a positive significant effect of cryptomining on tax generation, and

the magnitude increases relative to the unweighted model. Treated communities experience

a relative increase in taxes per capita by $29.5 dollars compared to control communities. In

expenditures, the magnitudes and statistical power also increase. As robustness, columns

(4) and (7) report the estimates using the common support. The effect is again significant

and the magnitude of the coefficient straddles the OLS and IPW estimates.

To put these numbers in perspective, we start with the observation that the average

community tax revenue per capita in Upstate NY is $500. If we take our main IPW result

as a benchmark, we find that cryptomining is associated with a 6% increase in taxes per

capita. Treated communities experience a relative increase in government expenditures by

about $51.4 dollars compared to control communities. Given average expenditure per capita

of about $800, we find that cryptomining is also associated with a 6% increase in expenditure

per capita.

Overall, the results from Table 8 support the thesis that government may have an incen-

tive to allow cryptominers to operate in their jurisdiction due to the prospect of increased

tax revenues.

6.2.2 Updated Local Welfare Calculation

We conclude this section by updating our NY State welfare calculation from Section 4.4 to

reflect the positive impact of cryptomining on local government finances. Table 9 shows the

results. Column (1) in Panel A reports the estimated monthly cost faced by small businesses

and households via higher electricity prices using the estimates from Table 3. Column (2)

scales those losses up to the year level to be able to compare them with the annual gains

in terms of tax revenues, which are reported in the same column in Panel (B). For this

calculation, we use the difference-in-difference estimates with IPW weighting. In Panel B,

we look at both taxes and government expenditures. The calculation using local government

expenditure gives us an upper bound on the effect of cryptomining on local public finances.

In column (4), we obtain aggregate annual welfare costs for Upstate NY by multiplying

the individual annual losses in column (2) by the number of affected individuals/small busi-

nesses.30 Aggregating small businesses and households, we obtain a welfare cost of about

$240 million happening via the electricity market spillovers. Higher tax revenues reduce this

30We compute the number of affected small businesses as the total number of small businesses in NY state
times the population share of Upstate NY relative to the entire state. The number of affected households
is the total population of Upstate NY in 2019 divided by the average number of people per households.
The number of affected households/businesses in the tax and expenditure calculations is the population in
treated towns.
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cost by almost $40 million, thus recovering slightly more than 15% of the losses. As a result,

we estimate a welfare cost of about $200 million in Upstate NY.

When accounting for the differential increase in government expenditures, we find that in

the aggregate cryptomining towns in Upstate NY generate almost $70 million in additional

government expenditures, thus recovering about 28% of the losses. As a result, we estimate

a lower bound on the welfare loss of about $175 million.

Finally, in column (5) of Table 9 we provide an estimate of the aggregate losses for the

entire US, under the assumption that about 25% of cryptomining is taking place in Upstate

NY. We obtain welfare losses for households and business of almost $1 billion. When taking

additional tax revenues into account, the net losses are between $700 to $820 million.

7 Conclusion

In this paper, we have presented testimonial and empirical evidence of the effects of cryp-

tomining on local economies. First, we focused on a setting — Upstate New York — where

cryptomining led to an increase in electricity prices. We estimated the local community’s

demand for electricity and used this to quantify the welfare losses incurred by the community

as a result of higher electricity prices. We find that the magnitude of the welfare losses is

large. We then turned to China, the country hosting the most cryptomining operations in

the world, to assess the impact of cryptomining on the broader economy. Consistent with

the nature of cryptomining, we find a negative impact on the labor market as well as fixed

asset investments. Finally, we investigated whether cryptomining benefits local economies

via increased tax revenues. We find that this is indeed the case in both Upstate NY and

China, which helps explain why local governments have been eager to welcome cryptomin-

ers in their jurisdictions despite the negative externalities we document. However, we find

that the additional tax revenues are smaller than the cost imposed on households and small

businesses through higher electricity prices.

Of course, cryptomining — just as any other technology advances — may enhance the

welfare of society at large (e.g., by supporting more democratic payment systems). This is

beyond the scope of this paper; our objective here is simply to draw attention to the impact

that this technology has on local economies. Future research could provide a full assessment

by comparing the results in this paper to any improvements in global welfare stemming from

proof-of-work cryptocurrencies. We also have abstracted from the costs to local communities

stemming from the pollution externality associated with cryptomining. Since we ignore this

channel, our estimates may be viewed as a lower bound on the total cost borne by the local

community.

Our contribution represents just the first step in the analysis of cryptomining — and

more generally energy intensive technology processing — around the world. In particular,

the pricing effects on local communities that we document in Upstate NY are likely to occur

in several other contexts and the issue is made all the more important by the recent Covid-19
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pandemic-induced crisis affecting small businesses and households.

26

Electronic copy available at: https://ssrn.com/abstract=3779720



References

Alsabah, H. and A. Capponi (2018). Bitcoin mining arms race: R&d with spillovers. Working

Paper.

Andrae, A. (2017). Total consumer power consumption forecast. Nordic Digital Business

Summit 10.

Andrae, A. S. G. and T. Edler (2015). On Global Electricity Usage of Communication

Technology: Trends to 2030. Challenges 6 (1), 117–157.

Baker Institute for Public Policy (2014). The effects of carbon tax policies on the us economy

and the welfare of households. Technical report, Rice University.

Basker, E. (2005). Job creation or destruction? labor market effects of wal-mart expansion.

Review of Economics and Statistics 87 (1), 174–183.

Biais, B., C. Bisiere, M. Bouvard, C. Casamatta, and A. J. Menkveld (2018). Equilibrium

bitcoin pricing. Working Paper.

Blandin, A., G. Pieters, Y. Wu, T. Eisermann, A. Dek, S. Taylor, and D. Njoki (2020).

Third global cryptoasset benchmarking study. Technical report, Cambridge Centre for

Alternative Finance, University of Cambridge, Judge Business School.

Budish, E. (2018). The economic limits of bitcoin and the blockchain. Working Paper.

Carlsten, M., H. Kalodner, S. Weinberg, and A. Narayanan (2016). On the instability of

bitcoin without the block reward. In 2016 ACM SIGSAC Conference on Computer and

Communications Security.

Chen, L., L. W. Cong, and Y. Xiao (2019). A brief introduction to blockchain economics.

Working Paper.

Chiu, J. and T. V. Koeppl (2019). Blockchain-based settlement for asset trading. The Review

of Financial Studies 32 (5), 1716–1753.

Ciamac, G. H. J. D. L. and C. Moallemi (2020). Monopoly without a monopolist: An

economic analysis of the bitcoin payment system.

Cong, L. W., Z. He, and J. Li (2018). Decentralized mining in centralized pools. Working

Paper.

Congressional Research Service (2019). Bitcoin, blockchain, and the energy sector. Technical

report.

27

Electronic copy available at: https://ssrn.com/abstract=3779720



Davis, S. J., J. Haltiwanger, R. S. Jarmin, C. J. Krizan, J. Miranda, A. Nucci, and K. San-

dusky (2007). Measuring the dynamics of young and small businesses: Integrating the

employer and nonemployer universes. Technical report, National Bureau of Economic

Research.

Davis, S. J., J. Haltiwanger, and S. Schuh (1996). Small business and job creation: Dissecting

the myth and reassessing the facts. Small business economics 8 (4), 297–315.

De Vries, A. (2018). Bitcoin’s growing energy problem. Joule 2 (5), 801–805.

Decker, R., J. Haltiwanger, R. Jarmin, and J. Miranda (2014). The role of entrepreneurship

in us job creation and economic dynamism. Journal of Economic Perspectives 28 (3), 3–24.

Department of Energy and Climate Change (2014). Estimated impacts of energy and climate

change policies on energy prices and bills. Technical report.

Dimitri, N. (2017). Bitcoin mining as a contest. Ledger 2, 31–37.

Easley, D., M. O’Hara, and S. Basu (2018). From mining to markets: The evolution of

bitcoin transaction fees. Working Paper.

Ellickson, P. B. and P. L. Grieco (2013). Wal-mart and the geography of grocery retailing.

Journal of Urban Economics 75, 1–14.

Goodkind, A. L., B. A. Jones, and R. P. Berrens (2020). Cryptodamages: Monetary value

estimates of the air pollution and human health impacts of cryptocurrency mining. Energy

Research & Social Science 59, 101281.

Halaburda, H., M. Sarvary, et al. (2016). Beyond bitcoin. The Economics of Digital Cur-

rencies .

Haltiwanger, J., R. S. Jarmin, and J. Miranda (2013). Who creates jobs? small versus large

versus young. Review of Economics and Statistics 95 (2), 347–361.

Hileman, G. and M. Rauchs (2017). 2017 global blockchain benchmarking study. Available

at SSRN 3040224 .

Ito, K. (2014). Do Consumers Respond to Marginal or Average Price? Evidence from

Nonlinear Electricity Pricing. American Economic Review 104 (2), 537–563.

Jia, P. (2008). What happens when wal-mart comes to town: An empirical analysis of the

discount retailing industry. Econometrica 76 (6), 1263–1316.

Kroll, J. A., I. C. Davey, and E. W. Felten (2013). The economics of bitcoin mining, or

bitcoin in the presence of adversaries. In Proceedings of WEIS, Volume 2013, pp. 11.

28

Electronic copy available at: https://ssrn.com/abstract=3779720



Kugler, L. (2018). Why cryptocurrencies use so much energy: and what to do about it.

Communications of the ACM 61 (7), 15–17.

Li, J., N. Li, J. Peng, H. Cui, and Z. Wu (2019). Energy consumption of cryptocurrency

mining: A study of electricity consumption in mining cryptocurrencies. Energy 168.

Liu, Y. and A. Tsyvinski (2018). Risks and returns of cryptocurrency. Technical report,

National Bureau of Economic Research.

Ma, J., J. Gans, and R. Tourky (2018). Market structure in bitcoin mining. NBER Working

Paper 24242.

Makarov, I. and A. Schoar (2020). Trading and arbitrage in cryptocurrency markets. Journal

of Financial Economics 135 (2), 293–319.

Masanet, E., A. Shehabi, N. Lei, S. Smith, and J. Koomey (2020). Recalibrating global data

center energy-use estimates. Science 367 (6481), 984–986.

Pagnotta, E. and A. Buraschi (2018). An equilibrium valuation of bitcoin and decentralized

network assets. Available at SSRN 3142022 .

Prat, J. and B. Walter (2018). An equilibrium model of the market for bitcoin mining.

Saleh, F. (2019). Blockchain without waste: Proof-of-stake. Available at SSRN 3183935 .

Truby, J. (2018). Decarbonizing bitcoin: Law and policy choices for reducing the energy

consumption of blockchain technologies and digital currencies. Energy Research and Social

Science 44.

Twomey, D. and A. Mann (2019). Fraud and manipulation within cryptocurrency markets. In

Corruption and Fraud in Financial Markets: Malpractice, Misconduct and Manipulation.

Wiley.

Yermack, D. (2015). Is bitcoin a real currency? an economic appraisal. In Handbook of

digital currency, pp. 31–43. Elsevier.

29

Electronic copy available at: https://ssrn.com/abstract=3779720



Figure 1: Cryptomining with floating electricity prices

Panel A: Equilibrium in Local Electricity Market with Upward-Sloping Supply

Panel B: Equilibrium in Local Electricity Market with Upward-Sloping Supply & Capacity
Binding

Note: The chart shows illustrations of supply and demand in markets with (Panel B) and without (Panel
A) supply capacity binding. The figures depict the setting in which the local electricity supplier provides
electricity up to capacity with a standard upward-sloping supply curve.
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Figure 2: Welfare Loss from Higher Prices

Note: The plot shows the equilibrium before (E0) and after (E1) the entry of cryptominers as well as the
welfare loss incurred by the local community as a result of higher electricity prices.
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Figure 3: Electricity prices over time in China
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Note: Data on electricity prices in China from the government agency National Development and Reform
Commission (URL: ndrc.gov.cn). We collected data for all provinces in China for 2009-2010 and 2015-2016.
We fill the missing years in the following way. We attribute 2009 prices for all years up to 2009, 2010 prices
for years between 2010 and 2012, 2015 prices for years between 2013 and 2015, and 2016 prices for years
from 2016 onward. The chart reports electricity prices for three regions with high cryptomining activity
(Heilongjiang, Inner Mongolia and Sichuan) and three regions with low cryptomining activity (Guangxi,
Jilin and Shaanxi) based on the data reported in Figure 5.
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Figure 4: Mining communities in New York state

Cryptomining
No Cryptomining

Note: Data on mining locations come from manual searches in local newspapers and newsources in English
through Google. We present locations at our finer level of town in Upstate NY.
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Figure 5: Mining cities in China

Panel A: Province-level locations of cryptomining

Panel B: City-Seat-level locations of cryptomining

Note: Data on mining locations come from manual searches in local newspapers and newsources in Mandarin
through Baidu and in English through Google. In panel A, we depict a heat map of China Province-level
cryptomining counts. In panel B, we present locations at our finer level of cities-seat, where a city-seat is
the main city with its controlling surrounding areas (akin to counties).
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Figure 6: Bitcoin prices and electricity consumption
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Note: Bitcoin price data comes from Coinmarketcap. Electricity consumption data comes from NYSERDA.
The blue line shows the average price of Bitcoin each month. The red dash-dot line and the green dash line
show total electricity consumption by small and industrial businesses in Plattsburgh and Peru, respectively.
We normalize electricity consumption in each town to 100 in December 2017, which is the month is which
Bitcoin prices reach their maximum at around $15.000. Grey areas denote December, January and February
of 2016-2017 and 2017-2018.
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Figure 7: Welfare Effects of Cryptominers’ Entry

Panel A: Households

Panel B: Small Businesses

Note: Total demand is given by the sum of household, small business and crypto demand. E0 represents
the market equilibrium before the entry of cryptominers and is given by the intersection between supply and
community demand (i.e. household plus small business). E1 represents the market equilibrium after the
entry of cryptominers and is given by the intersection between supply and total demand, inclusive of crypto
demand. P0 and P1 are the associated equilibrium prices. Panel A shows the welfare change for households
as the integral below the household demand curve between P0 and P1. Panel B does the same for small
businesses.
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Figure 8: Marginal Effects of Distance to Power Plant, Temperature and Electricity Price on Location
Decision of Cryptomining Facilities
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Note: Plotted are the results of spline estimation of the marginal effects of Log(Distance to a Power Plant),
Average Annual Temperature, and Electricity Price on the location of cryptomining facilities in China.
Economic variable data are from Province Yearbooks. The location of cryptomines are from manual news
searches in Baidu using each city name and keywords for cryptomining. The data are from 2013-2014.
Splines have three nodal points and a slope coefficient for each variable.
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Figure 9: Mining counties, Temperature and Power Plant Capacity in Upstate New York

Panel A: Cryptomining - Actual and predicted

Treated (Mining) counties
Other counties in upstate NY 
Down state NY

Cryptomining counties

(0.3,0.6]
[0.0,0.3]
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Predicted cryptomining probability

Panel B: Temperature and Power Plant Capacity

(47.6,50.5]
[43.9,47.6]
No data

Average Temperature

(4.7,8.7]
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Average Capacity (log)

Note: Data on mining locations come from manual searches in local newspapers and newsources in English
through Google. In panel A, we depict the counties with evidence of cryptomining and the predicted
probability of mining based on our location choice model. In panel B, we show the average temperature and
power plants capacity at the county level in 2010.
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Table 1: Summary Statistics for New York State
Data are from the economic statistics website of New York State and from each electricity

provider’s required reporting. Panel A shows the variables for the electricity market. Sales

and number of customers are collected by York State Energy Research and Development Au-

thority (NYSERDA) and can be found here https://www.nyserda.ny.gov/All-Programs/Programs/

Clean-Energy-Communities/Community-Energy-Use-Data. Data on the location-based marginal price

are collected by New York Independent System Operator (NYISO) and can be found here https:

//www.nyiso.com/energy-market-operational-data. Panel B shows tax revenues and government ex-

penditures at the year-town levels. Data can be found here https://seethroughny.net/benchmarking/

local-government-spending-and-revenue. Panel C shows the temperature at the county-month level and

the price of BTC which is available online (see among other sources https://coinmarketcap.com).

Observations Mean St.Dev Min Median Max
Panel A: Electricity market variables

Residential
Sales (MWh) 32818 1575.73 3558.89 0.00 666.87 74063.65
Customers (Count) 32818 2339.75 6180.76 0.00 889.00 109496.00

Small businesses
Sales (MWh) 26836 470.50 1893.83 0.00 51.95 36752.82
Customers (Count) 26836 253.60 656.34 0.00 93.00 9974.00

Other industrial
Sales (MWh) 16479 3572.28 14156.04 0.00 385.35 220115.51
Customers (Count) 16479 105.25 239.18 0.00 39.00 3522.00

Location-based marginal price ($/MWh) 14966 26.99 10.94 2.63 24.67 110.93

Panel B: Additional variables

Temperature (Degrees Fahrenheit) 41965 46.99 16.97 13.50 48.60 75.40
BTC price ($) 36 4042.60 3935.75 404.41 2577.81 15294.27
Taxes per capita ($) 6854 524.37 505.83 66.43 419.99 9083.09
Expenditures per capita ($) 6854 819.94 773.88 42.86 641.11 15267.27
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Table 2: Summary Statistics for China
Summary statistics are presented at the city-seat level for all of the cities within the inland provinces of

China, with the exception of three export-oriented, large metropolitan areas. The city data is the average

over the time period 2010-2017 for each city, unbalanced in the early years. Panel A reports statistics for

cities not hosting cryptomining, and Panel B, with cryptomining. Economic variable data are from Province

Yearbooks. The location of cryptomines are from manual news searches on Google and Baidu using each

city name and keywords for cryptomining. ***, **, and * indicate statistical significance of a two-sample

t-test at the 1%, 5%, and 10% levels.

Unique Cities Mean St.Dev Min Median Max
Panel A: Inland Cities without Cryptomining

Population (1,000s) 154 355.7 237.2 20.6 298.5 1,194.2
GDP (million CNY) 154 13,550 126,523 8,394 99,155 843,242
Energy (10,000 Kwh) 148 513,162 579,782 18,763 333,605 3,730,726
Business Taxes (million CNY) 43 214.1 65.9 89.3 195.2 390.3
Wages (CNY / year) 154 46,171 8,248 28,594 45,752 83,742
Value-Add Taxes (million CNY) 54 148.7 76.7 22.1 140.2 373.8
Fixed Asset Invest. (million CNY) 163 111,974 1,014 59 852 6,392
Location Prediction Variables

Temperature (Celsius) 123 13.8 5.6 -1.0 15.6 23.2
Electricity Price (yuan /KwH) 155 539 71 362 533 638
Closest Distance to Power (Km) 164 31.8 33.7 1.2 23.2 324.2

Closest Power Plant Type: Coal 61.0%
Gas 7.9%

Hydro 19.5%
Oil 0.6%

Solar 1.8%
Wind 9.2%

Panel B: Inland Cities with Cryptomining
Population (1,000s) 52 375.6 251.5 55.3 326.7 1,319.4
GDP (million CNY) 52 18,770** 18,026 1,904 12,698 89,726
Energy (10,000 Kwh) 44 956,075*** 958,055 53,061 512,366 4,878,905
Business Taxes (million CNY) 10 282.5** 107.2 163.8 259.2 515.6
Wages (CNY / year) 52 51,337*** 12,845 32,570 50,109 114,759
Value-Add Taxes (million CNY) 12 239.3** 116.5 87.6 200.7 438.8
Fixed Asset Invest. (million CNY) 54 154,877** 147,673 23,719 100,727 696,984
Location Prediction Variables

Temperature (Celsius) 40 13.1 4.2 5.0 14.7 19.7
Electricity Price (yuan /KwH) 52 519* 75 407 519 638
Closest Distance to Power (Km) 54 21.8** 24.4 1.1 13.3 137.5

Closest Power Plant Type: Coal 48.2%
Gas 11.1%

Hydro 27.8%
Oil 0.0%

Solar 0.0%
Wind 13.0%
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Table 3: Effect of Cryptomining on Electricity Prices and Demand
Column (1) presents the estimates of the first stage regression given by equation (6). The dependent variable

is the (log) location based marginal price (LBMP) in $/MWh. Column (2) presents the ordinary least square

(OLS) estimates from equation (7). Column (3) presents the instrumental variable (IV) estimates from

equation (8), using the first stage estimates from column (1). Panel A shows results for small businesses

and Panel B shows results for households. In columns (2) and (3) the dependent variable is small businesses

(Panel A) and household (Panel B) electricity consumption at the community level in log MWh. BTP price

is the (log) average price of Bitcoin in a month-year. All columns control for (log) local temperature and

include community, year and provider dummies. Errors are clustered at the community level. ***, **, and

* indicate statistical significance at the 1%, 5%, and 10% levels.

First Stage OLS IV

(1) (2) (3)
Panel A: Small Businesses

BTC price (log) 0.141∗∗∗

(0.005)
Price (log) 0.056∗∗∗ -0.179∗∗∗

(0.021) (0.057)
Temperature (log) -0.200∗∗∗ -0.088∗∗∗ -0.133∗∗∗

(0.020) (0.024) (0.031)

Community Fixed Effects Y Y Y
Year Fixed Effects Y Y Y
Provider Fixed Effects Y Y Y
Mean Y 3.22 5.70 5.70
SD Y 0.36 2.00 2.00
F stat 737.91
Obs. 3071 2977 2977
R2adj 0.37 0.98 0.98

Panel B: Residential

BTC price (log) 0.146∗∗∗

(0.006)
Price (log) 0.155∗∗∗ -0.074∗∗

(0.015) (0.031)
Temperature (log) -0.234∗∗∗ -0.093∗∗∗ -0.145∗∗∗

(0.020) (0.020) (0.024)
Community Fixed Effects Y Y Y
Year Fixed Effects Y Y Y
Provider Fixed Effects Y Y Y
Mean Y 3.23 7.56 7.56
SD Y 0.36 1.34 1.34
F stat 679.25
Obs. 3309 3251 3251
R2adj 0.39 0.98 0.97
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Table 4: Cryptomining Location Decision
Presented are logit coefficients from the choice of cryptomining city location, based on splines of the location

predictor variables - log distance to the closest power plant, temperature, and province-year electricity price.

Economic variable data are from Province Yearbooks. The location of cryptomines are from manual news

searches in Baidu using each city name and keywords for cryptomining. The data are from 2013-2014. Errors

are clustered at the city level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels.

Dependent Variable: Indicator for Cryptomining City
(1)

Distance to Closest Power Plant
Tercile 2 8.442**

[4.112]
Tercile 3 -2.350

[3.971]
Slope Node 0 to 1 -1.199***

[0.437]
Slope Node 1 to 2 -4.237***

[1.381]
Slope Node 2 to 3 -0.489

[0.991]
Temperature

Tercile 2 -3.815
[3.454]

Tercile 3 23.53***
[5.074]

Slope Node 0 to 1 0.0689
[0.129]

Slope Node 1 to 2 0.467**
[0.219]

Slope Node 2 to 3 -1.148***
[0.269]

Electricity Price
Tercile 2 -31.82**

[13.43]
Tercile 3 13.56

[13.40]
Slope Node 0 to 1 -0.0341

[0.0219]
Slope Node 1 to 2 0.0321**

[0.0148]
Slope Node 2 to 3 -0.0449***

[0.0136]
Log Population -1.389***

[0.409]
Log Government Budget 2.639***

[0.525]
Log GDP -0.432

[0.433]

Observations 376
Pseudo R-squared 0.409
Area under ROC Curve 0.905
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Table 5: Effect of Cryptomining on Energy
All models are difference-in-differences specifications, with varying methods to account for location selection.

The dependent variable is an annual observation of kilowatt hours of energy consumption at the city-seat

level for all of the cities within the inland provinces of China. Economic variables data are from Province

Yearbooks. Cryptomining is an indicator that the city-seat hosts cryptomines, manually collected from news

searches in Baidu and other sources using each city name and keywords for cryptomining. Post indicates

post-2015. Fossil indicates that the city’s closet power plant is coal-, oil-, or gas-powered. Column (1) is OLS.

Columns (2) and (3) are IPW, weighting observations by the inverse probability weight, normalized, to level

the estimated weights to make the treatment and control have the same probability of hosting cryptomining.

All columns have control variables log GDP, log population, electricity price, and year dummies. Errors are

robust. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels.

(1) (2) (3)
Dependent Variable: Log (Energy Consumption)

Difference-in-differences Model: OLS IPW IPW

Post * Cryptomining -0.0374 0.0139 -0.173
[0.0492] [0.0567] [0.108]

Post * Cryptomining * Fossil 0.231*
[0.125]

Post * Fossil 0.0561
[0.0780]

Log Population 0.137 0.112 0.108
[0.139] [0.106] [0.109]

Log GDP 0.0707 0.0599 0.0611
[0.0479] [0.0478] [0.0483]

Log Electricity Price 0.158 0.205 0.175
[0.206] [0.195] [0.195]

City Fixed Effects Y Y Y
Year Fixed Effects Y Y Y
Observations 941 721 721
R-squared 0.946 0.941 0.941
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Table 6: Effect of Cryptomining on the Business Sector
All models are difference-in-differences specifications, with varying methods to account for location selection.

The dependent variables in columns (1)-(3) and columns (4)-(6) are, respectively, the per capita wage level

and the log of fixed asset investment at the city-seat level for all of the cities within the inland provinces

of China. Economic variables data are from Province Yearbooks. Cryptomining is an indicator that the

city-seat hosts cryptomines, manually collected from news searches in Baidu and other sources using each

city name and keywords for cryptomining. Post indicates post-2015. Fossil indicates that the city’s closet

power plant is coal-, oil-, or gas-powered. Columns (1) and (4) are estimated via OLS. Columns (2), (3), (5)

and (6) are IPW, weighting observations by the inverse probability weight, normalized, to level the estimated

weights to make the treatment and control have the same probability of hosting cryptomining. All columns

have control variables log GDP, log population, and year dummies. Columns (4) to (6) also include the

wage level, to ensure identification of separate effects. Errors are robust. ***, **, and * indicate statistical

significance at the 1%, 5%, and 10% levels.

(1) (2) (3) (4) (5) (6)
Dependent Variable: Log (Wage level) Log (Fixed Asset Investment)

Difference-in-differences Model: OLS IPW IPW OLS IPW IPW

Post * Cryptomining -0.426** -0.678* -1.662 -0.177*** -0.363*** -0.274**
[0.209] [0.373] [1.180] [0.0653] [0.0918] [0.132]

Post * Cryptomining * Fossil 1.17 -0.0969
[1.226] [0.166]

Post * Fossil 0.442* -0.0599
[0.242] [0.0789]

Log Population -1.025* -1.128* -1.174* 0.235 0.370** 0.388**
[0.569] [0.662] [0.679] [0.156] [0.168] [0.176]

Log GDP -0.0519 -0.0792* -0.0840** 0.368*** 0.342*** 0.344***
[0.0393] [0.0412] [0.0421] [0.0846] [0.0906] [0.0897]

Log Wages -0.0486*** -0.0496*** -0.0448***
[0.00923] [0.00929] [0.00942]

City Fixed Effects Y Y Y Y Y Y
Year Fixed Effects Y Y Y Y Y Y
Observations 1262 883 883 1255 876 876
R-squared 0.253 0.249 0.281 0.877 0.856 0.857
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Table 7: Effect of Cryptomining on Local Business Taxes - China
All models are difference-in-differences specifications, with varying methods to account for location selection.

The dependent variables in columns (1) to (3) and (4) to (6) are, respectively the annual city value-added

taxes collected and the annual business income taxes collected for cities in the inland provinces of China.

Economic variables data are from Province Yearbooks. Cryptomining is an indicator that the city-seat hosts

cryptomines, manually collected from news searches in Baidu and other sources using each city name and

keywords for cryptomining. Post indicates post-2015. Fossil indicates that the city’s closet power plant is

coal-, oil-, or gas-powered. Columns (1) and (4) are estimated with OLS. Columns (2), (3), (5) and (6)

are estimated via IPW, weighting observations by the inverse probability weight, normalized, to level the

estimated weights to make the treatment and control have the same probability of hosting cryptomining..

All columns have control variables log population, log city government budget, and year dummies. Errors

are robust. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels.

(1) (2) (3) (4) (5) (6)
Dependent Variable: Log (Value-Added Business Taxes) Log (Business Taxes)

Difference-in-differences Model: OLS IPW IPW OLS IPW IPW

Post * Cryptomining 0.0368 -0.0359 0.162* 0.0474 -0.0113 0.141*
[0.0703] [0.0960] [0.0951] [0.0764] [0.110] [0.0759]

Post * Cryptomining * Fossil -0.205 -0.189
[0.148] [0.149]

Post * Fossil -0.0509 0.058
[0.0810] [0.0894]

Log Population -0.0513 0.0324 0.0146 0.0794 0.0581 0.046
[0.242] [0.344] [0.348] [0.125] [0.188] [0.203]

Log Budget 0.730*** 0.701*** 0.693*** 0.248** 0.283** 0.289**
[0.125] [0.147] [0.145] [0.124] [0.139] [0.139]

City Fixed Effects Y Y Y Y Y Y
Year Fixed Effects Y Y Y Y Y Y
Observations 408 376 376 318 306 306
R-squared 0.95 0.939 0.940 0.964 0.963 0.964
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Table 8: Effect of Cryptomining on Local Taxes - New York State
Column (1) is a logit location choice model estimated at the town level. The dependent variable is a dummy

equal to one if a town belongs to a county with evidence of cryptomining. Data on cryptomining are

manually collected from news searches in Google and other sources using each town name and keywords for

cryptomining. Capacity mw is the estimated total capacity in megawatts at the county level in 2010. The

data on power plan capacity comes from the Global Power Plant Database. Temperature is the average

temperature at the county level in 2010. The data on temperature comes from the National Centers for

Environmental Information (NCEI). Models in columns (2) to (7) are difference-in-differences specifications,

with varying methods to account for location selection. The dependent variables in columns (2) to (4) and

(5) to (7) are, respectively the annual taxes per capita and expenditure per capita for towns in Upstate

New York. Post indicates post-2016. Columns (2) and (5) are estimated with OLS. Columns (3) and (6)

are estimated via IPW, weighting observations by the inverse probability weight, normalized, to level the

estimated weights to make the treatment and control have the same probability of hosting cryptomining.

Columns (4) and (7) are based on a common support restriction using the estimates of the location-choice

model in column (1). Errors are robust. ***, **, and * indicate statistical significance at the 1%, 5%, and

10% levels.

Cryptomining Taxes Expenditures

(1) (2) (3) (4) (5) (6) (7)
OLS IPW Common OLS IPW Common

Support Support

Capacity mw (log) 0.302∗∗∗

(0.051)

Temperature -0.406∗∗∗

(0.059)

Post * Cryptomining 17.028∗∗ 29.461∗∗∗ 21.263∗∗∗ 35.030 51.368∗ 37.303∗

(6.780) (8.894) (6.735) (22.263) (29.734) (22.340)

Community Fixed Effects Y Y Y Y Y Y
Year Fixed Effects Y Y Y Y Y Y
Mean Y 524.37 498.60 508.79 819.97 784.18 806.96
SD Y 505.92 426.95 450.01 774.02 681.98 728.44
Obs. 719 6851 6135 6135 6851 6135 6135
R2adj 0.97 0.96 0.96 0.89 0.88 0.87
Pseudo R-squared 0.10
Area under ROC Curve .71
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Table 9: Local Welfare Calculations
In Panel A, monthly costs for small businesses and households comes from the procedure discussed in Section

4.4. Annual costs are monthly costs multiplied by twelve. Small businesses exposed is the number of total

small businesses in NY state which we allocated to Upstate NY based on the share of its population relative

to the total in NY state. Household exposed is the total population of upstate New York in 2019 divided by

the average number of people per households. In Panel B annual costs are the tax revenues and government

expenditures per capital from the difference-in-difference IPW estimates in Table 8. Count of exposed is the

population in treated towns. Welfare cost upstate NY is the product of annual cost and count of exposed

in million dollars. Welfare cost national scale up the welfare cost in upstate NY under the assumption that

about 25% of cryptomining in the US is happening in Upstate NY.

(1) (2) (3) (4) (5)
Monthly Annual Count of Welfare Welfare
Cost ($) Cost ($) Exposed (,000) Upstate NY ($M) National ($M)

Panel A: Cryptomining local spillover

Small businesses -12 -144 550 -79 -316
Households -6 -71 2,321 -165 -661

-244 -977

Panel B: Accounting for effect on local government

Taxes 29 1,340 39 155

-205 -821

Expenditures 51 1,340 68 273

-176 -704
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