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ABSTRACT

Although music is often defined as the “language of emo-
tion”, the exact nature of the relationship between musical
parameters and the emotional response of the listener re-
mains an open question. Whereas traditional psycholog-
ical research usually focuses on an analytical approach,
involving the rating of static sounds or preexisting musi-
cal pieces, we propose a synthetic approach based on a
novel adaptive interactive music system controlled by an
autonomous reinforcement learning agent. Preliminary re-
sults suggest an autonomous mapping from musical pa-
rameters (such as tempo, articulation and dynamics) to the
perception of tension is possible. This paves the way for
interesting applications in music therapy, interactive gam-
ing, and physiologically-based musical instruments.

1. INTRODUCTION

Music is generally admitted to be a powerful carrier of
emotion or mood regulator, and various studies have ad-
dressed the effect of specific musical parameters on emo-
tional states [1, 2, 3, 4, 5, 6]. Although many different self-
report, physiological and observational means have been
used, in most of the cases those studies are based on the
same paradigm: one measures emotional responses while
the subject is presented to a static sound sample with spe-
cific acoustic characteristics or an excerpt of music repre-
sentative of a certain type of emotions.

In this paper, we take a synthetic and dynamic approach
to the exploration of mappings between perceived musi-
cal tension [7, 8] and a set of musical parameters by using
Reinforcement Learning (RL) [9].

Reinforcement learning (as well as agent-based tech-
nology) has already been used in various musical systems
and most notably for improving real time automatic impro-
visation [10, 11, 12, 13]. Musical systems that have used
reinforcement learning can roughly be divided into three
main categories based on the choice of the reward charac-
terizing the quality of musical actions. In one scenario the
reward is defined to match internal goals (a set of rules for
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Figure 1. The system is composed of three main compo-
nents: the music engine (SiMS), the reinforcement learn-
ing agent and the listener who provides the reward signal

instance), in another scenario it can be given by the audi-
ence (a like/dislike criterion), or else it is based on some
notion of musical style imitation [13]. Unlike most previ-
ous examples where the reward relates to some predefined
musical rules or quality of improvisation, we are interested
in the emotional feedback from the listener in terms of per-
ceived musical tension (Figure 1).

Reinforcement learning is a biologically plausible ma-
chine learning technique particularly suited for an explo-
rative and adaptive approach to emotional mapping as it
tries to find a sequence of parameter change that optimizes
a reward function (in our case musical tension). This ap-
proach contrasts with expert systems such as the KTH rule
system [14, 15] that can modulate the expressivity of music
by applying a set of predefined rules inferred from previous
extensive music and performance analysis. Here, we pro-
pose a paradigm where the system learns to autonomously
tune its own parameters in function of the desired reward
function (musical tension) without using any a-priori mu-
sical rule.

Interestingly enough, the biological validity of RL is
supported by numerous studies in psychology and neu-
roscience that found various examples of reinforcement
learning in animal behavior (e.g. foraging behavior of bees
[16], the dopamine system in primate brains [17], ...).
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Figure 2. SiMS is a situated music generation framework
based on a hierarchy of musical agents communicating via
the OSC protocol.

2. A HIERARCHY OF MUSICAL AGENTS FOR
MUSIC GENERATION

We generate the music with SiMS/iMuSe, a Situated Intel-
ligent Interactive Music Server programmed in Max/MSP
[18] and C++. SiMS’s affective music engine is composed
of a hierarchy of perceptually meaningful musical agents
(Figure 2) interacting and communicating via the OSC pro-
tocol [19]. SiMS is entirely based on a networked architec-
ture. It implements various algorithmic composition tools
(e.g: generation of tonal, Brownian and serial series of
pitches and rhythms) and a set of synthesis techniques val-
idated by psychoacoustical tests [20, 3]. Inspired by previ-
ous works on musical performance modeling [14], iMuSe
allows to modulate the expressiveness of music generation
by varying parameters such as phrasing, articulation and
performance noise.

Our interactive music system follows a biomimetic ar-
chitecture that is multi-level and loosly distinguishes sens-
ing (the reward function) from processing (adaptive map-
pings by the RL algorithm) and actions (changes of musi-
cal parameters). It has to be emphasized though that we do
not believe that these stages are discrete modules. Rather,
they will share bi-directional interactions both internal to
the architecture as through the environment itself [21]. In
this respect it is a further advance from the traditional sep-
aration of sensing, processing and response paradigm[22]
which was at the core of traditional AI models.

In this project, we study the modulation of music by
three parameters contributing to the perception of musical
tension, namely articulation, tempo and dynamics.

While conceptually fairly simple, the music material
generator has been designed to keep the balance between

predictability and surprise. The real-time algorithmic com-
position process is inspired by works from minimalist com-
posers such as Terry Riley (In C, 1964) where a set of basic
precomposed musical cells are chosen and modulated at
the time of performance creating an ever-changing piece.

The choice of base musical material relies on the ex-
tended serialism paradigm. We a priori defined sets for
every parameter (rhythm, pitch, register, dynamics, artic-
ulation). The generation of music from these sets is then
using non-deterministic selection principles, as proposed
by Gottfried Michael Koenig [23]. (The sequencer mod-
ules in SiMS can, for instance, choose a random element
from a set, or choose all the elements in order successively,
choose all the elements in reverse order, or play all the el-
ements once without repetition, etc.)

For this project we used a simple modal pitch serie [0,
3, 5, 7, 10] shared by three different voices (2 monophonic
and 1 polyphonic). The first monophonic voice is the lead,
the second is the bass line, and the third polyphonic voice is
the chord accompaniment. The rhythmic values are coded
as 16n for a sixteenth note, 8n for a eighth note, etc. The
dynamic values are coded as midi velocity from 0 to 127.
The other parameters correspond to standard pitch class set
and register notation. The pitch content for all the voices
is based on the same mode.

• Voice1:

– Rhythm: [16n 16n 16n 16n 8n 8n 4n 4n]

– Pitch: [0, 3, 5, 7, 10]

– Register: [5 5 5 6 6 6 7 7 7]

– Dynamics: [90 90 120 50 80]

• Voice2:

– Rhythm:[4n 4n 4n 8n 8n]

– Pitch: [0, 3, 5, 7, 10]

– Register: [3 3 3 3 4 4 4 4]

– Dynamics: [90 90 120 50 80]

• Polyphonic Voice:

– Rhythm: [2n 4n 2n 4n]

– Pitch: [0 3 5 7 10]

– Register: [5]

– Dynamics: [60 80 90 30]

– with chord variations on the degrees [1 4 5]

The selection principle was set to “series” for all the pa-
rameters so the piece would not repeat in an obvious way
1 . This composition paradigm allows the generation of
constantly varying, yet coherent, musical sequences. Prop-
erties of the music generation such as articulation, dynam-
ics modulation and tempo are then modulated by the RL
algorithm in function of the reward defined as the musical
tension perceived by the listener.

1 Samples: http://www.dtic.upf.edu/˜slegroux/confs/SMC10



Figure 3. The agent-environment interaction (from [9])

3. MUSICAL PARAMETER MODULATION BY
REINFORCEMENT LEARNING

3.1 Introduction

Our goal is to teach our musical agent to choose a sequence
of musical gestures (choice of musical parameters) that
will increase the musical tension perceived by the listener.
This can be modeled as an active reinforcement learning
(RL) problem where the learning agent must decide what
musical action to take depending on the emotional feed-
back (musical tension) given by the listener in real-time
(Figure 1). The agent is implemented as a Max/MSP ex-
ternal in C++, based on RLKit and the Flext framework
2 .

The interaction between the agent and its environment
can be formalized as a Markov Decision Process (MDP)
where [9]:

• at each discrete time t, the agent observes the envi-
ronment’s state st 2 S, where S is the set of possible
states (in our case the musical parameters driving the
generation of music).

• it selects an action at 2 A(st), where A(st) is the
set of actions available in state st (here, the actions
correspond to an increase or decrease of the musical
parameter value)

• the action is performed and a time step later the agent
receives a reward rt+1 2 R and reaches a new state
st+1 (the reward is given by the listener’s perception
of musical tension)

• at time t the policy is a mapping ⇡t(s,a) defined as
the probability that at = a if st = s and the agent
updates its policy as a result of experience

3.2 Returns

The agent acts upon the environment following some pol-
icy ⇡. The change in the environment introduced by the
agent’s actions is communicated via the reinforcement sig-
nal r. The goal of the agent is to maximize the reward it
receives in the long run. The discounted return Rt is de-
fined as:

Rt =
1X

k=0

�

k
rt+k+1 (1)

2 http://puredata.info/Members/thomas/flext/

where 0  �  1 is the discount rate that determines the
present value of future rewards. If � = 0, the agent only
maximizes immediate rewards. In other words, � defines
the importance of future rewards for an action (increasing
or decreasing a specific musical parameter).

3.3 Value functions

Value functions of states or state-action pairs are functions
that estimate how good (in terms of future rewards) it is for
an agent to be in a given state (or to perform a given action
in a given state).

V

⇡(s) is the state-value function for policy ⇡. It gives
the value of a state s under a policy ⇡, or the expected
return when starting in s and following ⇡. For MDPs we
have:

V

⇡(s) = E⇡{Rt|st = s}

= E⇡{
1X

k=0

�

k
rt+k+1|st = s}

Q

⇡(s, a) , or action-value function for policy ⇡, gives the
value of taking action a in a state s under a policy ⇡.

Q

⇡(s, a) = E⇡{Rt|st = s, at = a}

= E⇡{
1X

k=0

�

k
rt+k+1|st = s, at = a}

We define as optimal policies the ones that give higher ex-
pected return than all the others. Thus,V ⇤(s) = max⇡V

⇡(s),
and Q

⇤(s, a) = max⇡Q
⇡(s, a) which gives Q

⇤(s, a) =
E{rt+1 + �V

⇤(st+1)|st = s, at = a}

3.4 Value function estimation

3.4.1 Temporal Difference (TD) prediction

Several methods can be used to evaluate the value func-
tions. We chose TD learning methods over Monte Carlo
methods as they allow for online incremental learning. With
Monte Carlo methods, one must wait until the end of an
episode whereas with TD, one need to wait only one time
step. The TD learning update rule for V ⇤ the estimate of
V is given by:

V (st) V (st) + ↵[rt+1 + �V (st+1)� V (st)]

where ↵ is the step-size parameter or learning rate. It con-
trols how fast the algorithm will adapt.

3.4.2 Sarsa TD control

For the transitions from state-action pairs we use a method
similar to TD learning called sarsa on-policy control. On-
policy methods try to improve the policy that is used to
make decision. The update rule is given by:

Q(st, at)  Q(st, at) + ↵[rt+1 +

... �Q(st+1, at+1)�Q(st, at)]



3.4.3 Memory: Eligibility traces (Sarsa(�))

An eligibility trace is a temporary memory of the occur-
rence of an event.

We define et(s, a) the trace of the state-action pair s, a
at time t. At each step, the traces for all states decay by ��

and the eligibility trace for the state visited is incremented.
� represent the trace decay. It acts as a memory and sets the
exponential decay of a reward based on previous context.

et(s, a) =

(
��et�1(s, a) + 1 for s = st , a = at

��et�1(s, a) if s 6= st

we have the update rule

Qt+1(s, a) = Qt(s, a) + ↵�tet(s, a)

where

�t = rt+1 + �Qt(st+1, at+1)�Qt(st, at)

3.4.4 Action-value methods

For the action-value method, we chose a ✏-greedy policy.
Most of the time it chooses an action that has maximal es-
timated action value but with probability ✏ it instead select
an action at random [9].

4. MUSICAL TENSION AS A REWARD
FUNCTION

We chose to base the autonomous modulation of the mu-
sical parameters on the perception of tension. It has often
been said that musical experience may be characterized by
an ebb and flow of tension that gives rise to emotional re-
sponses [24, 25]. Tension is considered a global attribute
of music, and there are many musical factors that can con-
tribute to tension such as pitch range, sound level dynam-
ics, note density, harmonic relations, implicit expectations,
...

The validity and properties of this concept in music have
been investigated in various psychological studies. In par-
ticular, it has been shown that behavioral judgements of
tension are intuitive and consistent across participants [7,
8]. Tension has also been found to correlate with the judge-
ment of the amount of emotion of a musical piece and
relates to changes in physiology (electrodermal activity,
heart-rate, respiration) [26].

Since tension is a well-studied one-dimensional param-
eter representative of a higher-dimensional affective mu-
sical experience, it makes a good candidate for the one-
dimensional reinforcer signal of our learning agent.

5. PILOT EXPERIMENT

As a first proof of concept, we looked at the real-time be-
haviour of the adaptive music system when responding to
the musical tension (reward) provided by a human listener.
The tension was measured by a slider GUI controlled by
a standard computer mouse. The value of the slider was
sampled every 100 ms. The listener was given the follow-
ing instructions before performing the task: “use the slider

to express the tension you experience during the musical
performance. Move the slider upwards when tension in-
creases and downward when it decreases”.

The music generation is based on the base material de-
scribed in section 2. The first monophonic voice controlled
the right hand of a piano, the second monophonic voice
an upright acoustic bass and the polyphonic voice the left
hand of a piano. All the instruments were taken from the
EXS 24 sampler from Logic Pro (Apple).

The modulation parameter space is of dimension 3. Dy-
namics modulation is obtained via a midi velocity gain
factor between [0.0, 2.0]. Articulation is defined on the
interval [0.0, 2.0] (where a value > 1 corresponds to a
legato and < 1 a staccato). Tempo is modulated from 10
to 200 BPM. Each dimension was discretized into 8 levels,
so each action of the reinforcement algorithm produces an
audible difference. The reward values are discretized into
three values representing musical tension levels (low=0,
medium=1 and high=2).

We empirically setup the sarsa(�) parameters, to " =
0.4,� = 0.8, � = 0.1,↵ = 0.05 in order to have an inter-
esting musical balance between explorative and exploita-
tive behaviors and some influence of memory on learning.
✏ is the probability of taking a random action. � is the ex-
ponential decay of reward (the higher �, the less the agent
remembers). ↵ is the learning rate (if ↵ is high, the agent
learns faster but can lead to suboptimal solutions).

5.0.5 One dimension: independant adaptive modulation
of Dynamics, Articulation and Tempo

As our first test case we looked at the learning of one pa-
rameter at a time. For dynamics, we found a significant
correlation (r = 0.9, p < 0.01): the tension increased
when velocity increased (Figure 4). This result is con-
sistent with previous psychological literature on tension
and musical form [27]. Similar trends were found for ar-
ticulation (r = 0.25, p < 0.01) (Figure 5) and tempo
(r = 0.64, p < 0.01) (Figure 6). Whereas litterature on
tempo supports this trend [28, 2], reports on articulation
are more ambiguous [2].

5.0.6 Two dimensions: modulation of Tempo and
Dynamics

When testing the algorithm on the 2-dimensional param-
eter space of Tempo and Dynamics, the convergence is
slower. For our example trial, an average reward of medium
tension (value of 1) is only achieved after 16 minutes of
training (1000 s.) (Figure 7) compared to 3 minutes (200
s.) for dynamics only (Figure 4). We observe significant
correlations between tempo (r = 0.9, p < 0.01), dynam-
ics (r = 0.9, p < 0.01) and reward in this example, so
the method remains useful for the study the relationship
between parameters and musical tension. Nevertheless, in
this setup, the time taken to converge towards a maximum
mean reward would be too long for real-world applications
such as mood induction or music therapy.
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Figure 4. The RL agent automatically learns to map an
increase of perceived tension, provided by the listener as
a reward signal, to an increase of the dynamics gain. Dy-
namics gain level is in green, cumulated mean level is in
red/thin, reward is in blue/crossed and cumulated mean re-
ward is in red/thick.
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Figure 5. The RL agent learns to map an increase of per-
ceive tension (reward) to longer articulations.
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Figure 6. The RL agent learns to map an increase of mu-
sical tension (reward) to faster tempi.
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Figure 7. The RL agent learns to map an increase of mu-
sical tension (reward in blue/thick) to faster tempi (param-
eter 1 in green/dashed) and higher dynamics (parameter 2
in red/dashed).

5.0.7 Three dimensions: adaptive modulation of Volume,
Tempo and Articulation

When generalizing to three musical parameters (three di-
mensional state space), the results were less obvious within
a comparable interactive session time frame. After a train-
ing of 15 minutes, the different parameters values were still
fluctuating, although we could extract some trends from
the data. It appeared that velocity and tempo were in-
creased for higher tension, but the influence of the articu-
lation parameter was not always clear. In figure 8 we show
some excerpt where a clear relationship between musical
parameter modulation and tension could be observed. The
piano roll representative of a moment where the user per-
ceived low tension (center) exhibits sparse rhythmic den-
sity due to lower tempi , long notes (long articulation) and
low velocity (high velocity is represented as red) whereas
a passage where the listener perceived high tension (right)
exhibits denser, sharper and louder notes. The left figure
representing an early stage of the reinforcement learning
(beginning of the session) does not seem to exhibit any spe-
cial characteristics (we can observe both sharp and long ar-
ticulation. e.g. the low voice (register C1 to C2) is not very
dense compared to the other voices). From these trends,
we can hypothesize that perception of low tension would
relate to sparse density, long articulation and low dynam-
ics which corresponds to both intuition and previous offline
systematic studies [27].

These preliminary tests are encouraging and suggest that
a reinforcement learning framework can be used to teach
an interactive music system (with no prior musical map-
pings) how to adapt to the perception of the listener. To
assess the viability of this model, we plan more extensive
experiments in future studies.

6. CONCLUSION

In this paper we proposed a new synthetic framework for
the investigation of the relationship between musical pa-



Learning Low tension High tension

Figure 8. A piano roll representation of an interactive
learning session at various stage of learning. At the be-
ginning of the session (left), the musical output shows no
specifc characteristics. After 10 min of learning, excerpts
where low tension (center) and high tension reward is pro-
vided by the listener (right) exhibit different characteristics
(cf text). The length of the notes correspond to articulation.
Colors from blue to red correspond to low and high volume
respectively.

rameters and the perception of musical tension. We created
an original algorithmic music piece that can be modulated
by parameters such as articulation, velocity and tempo, as-
sumed to influence tension. The modulation of those pa-
rameters was autonomously learned in real-time by a re-
inforcement learning agent optimizing the reward signal
based on the musical tension perceived by the listener. This
real-time learning of musical parameters provides an in-
teresting alternative to more traditional research on music
and emotion. We could observe correlations between spe-
cific musical parameters and an increase of perceived mu-
sical tension. Nevertheless, one limitation of this method
for real-time adaptive music is the time taken by the algo-
rithm to converge towards a maximum average reward, es-
pecially if the parameter space is of higher dimensions. We
will improve several aspects of the experiment in follow-
up studies. The influence of the reinforcement learning
parameters on the convergence needs to be tested in more
details, and other relevant musical parameters will be taken
into account. In the future we will also run experiments to
assess the coherence and statistical significance of these
results over a larger population.
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